Density, Viscosity, and Electrical Conductivity Measurements on the Ternary System $H_2O + C_2H_5OH + LiCl$ over the Entire Ranges of Solvent Composition and LiCl Solubility from (-5 to +50) °C

Hafiz-ur-Rehman and M. Shahid Ansari*

Department of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan

Systematic measurements of density, viscosity, and electrical conductivity on the ternary system water + ethanol + lithium chloride over entire ranges of solvent composition and LiCl solubility from (-5 to +50)°C have been carried out. The temperature-independent aquamolality scale, m (LiCl moles per 55.5 moles of solvent) has been used to justify data comparison not only at different temperatures but also for the solutions in various solvent mixtures. Density isotherms (fitted to second-order polynomials in m) provided a composition-dependent density index, $g(x_1)$, which can conveniently be used to determine the density at any desired LiCl concentration, mixture composition, and temperature. Excess molar volumes (V^E) of the solvent mixtures have been calculated over the whole temperature range, and minima of all the V^{E} isotherms at the same water mole fraction, $x_1 = 0.6$, suggest that no significant structural rearrangement takes place in the solvent mixtures upon temperature variation. From the density data, the "temperature average coefficient of thermal expansion" (β) is also determined for all the samples. Fitting the viscosity (η) isotherms to an extended Jones-Dole-type cubic equation in *m* provided coefficients related to various interactions taking place in the solutions. The temperature dependence of the entire η data can well be explained by the Arrheniustype equation involving single flow activation energies (E_a) that always increased with LiCl concentration for a given solvent but exhibited a sharper rise for the ethanol-rich mixtures; E_a values tend to pass through maxima at $x_1 \approx 0.6$. In all the cases, electrical conductivity (κ) plotted against *m* exhibits maxima which shift from 4.5*m* to $\sim 6m$ in the water-rich mixtures, and exhibition of the κ -maxima has been explained with a simple model according to which κ at any given m is comprised of two sets of the oppositely acting terms, namely κ_{up} and κ_{down} . Since all the κ plots fit very well to third-order polynomials in *m* with negligibly small coefficients of the cubic terms, the other two terms involving m and m^2 can be compared with κ_{up} and $\kappa_{\rm down}$, respectively. From temperature variation of molar conductivity, activation energies have been determined and compared with those of viscous flow.

Introduction

Propanols and other lower alcohols are completely miscible with water in all proportions at ambient temperatures which allows preparation of their aqueous mixtures of continuously varying properties.^{1–4} Structural properties of aqueous alcohols have remained the subject of many investigations.^{5–8} Aqueous alcohols are also considered as interesting "solvent systems" for exhibiting relatively higher solubilities of different solutes including electrolytes.^{9,10} By maintaining calculated amounts of alcohols as cosolvents in their aqueous mixtures, controlled precipitation of salts can be achieved.¹¹⁻¹⁴ The significance of the electrolyte solutions in aqueous alcohols has been reported in various investigations of biological interest as well.¹⁵⁻¹⁷ Therefore, data collected on some of the basic properties like density, molar volume, viscosity, electrical conductivity, etc. for aqueous alcohol systems over wide ranges of solvent composition, electrolyte concentration, and temperature can be of great utility. Since water molecules act as a strong ligand^{18,19} and tend to selectively solvate ions in the mixtures,^{20–22} change of either mixture composition or electrolyte concentration or even temperature may have an influence on the above-mentioned basic properties of the ternary systems.

Besides densities of liquids, also their viscosities over a wide range around ambient temperature have immense importance in solving engineering problems related to heat or mass transfer and fluid dynamics.²³⁻²⁵ Further, the viscosity variation with temperature and solvent composition are commonly employed as indices for obtaining useful information on structure and interactions within the liquid systems.^{24,26,27} Temperaturedependent viscosity studies enable determination of flow activation energy, still another important parameter in chemical research.28,29 Electrical conductance has always remained important in the investigation of electrolyte solutions, also for its significance toward understanding of the ion-ion, ion-solvent, and even solvent-solvent interactions.^{30–32} Conductivity (κ) is known to depend on factors like temperature, solvent employed, nature of the electrolyte, and its concentration.^{33,34} However, the molar conductivity (Λ_m) being a concentration normalized quantity should not depend on the electrolyte's concentration unless mutual interactions between the ions start operating.35

 $H_2O + C_2H_5OH$ (*the mixture*) has shown appreciably high solubility for LiCl, while $H_2O + C_2H_5OH + LiCl$ (*the system*) could sustain up to quite low temperatures without salting out; in addition, *the system* also exhibited some interesting structural and dynamic features.³⁶ *The system* may have its potential applications in areas like chemical engineering, the automobile industry, biotechnology, medicine, batteries, fuel cells, etc. In

^{*} Corresponding author. E-mail: ansari_m_s@yahoo.com.

Table 1. Densities $(\rho/g \cdot cm^{-3})$ at Different Temperatures and LiCl Concentrations in Binary Mixtures of Water (1) and Ethanol (2) Having Mole Fractions x_1 and x_2

concentra	ation						temperat	ture, <i>t</i> /°C					
aquamolality/ <i>m</i>	molality/m	-5	0	5	10	15	20	25	30	35	40	45	50
					$x_1 =$	$1.0, x_2 = 0$).0						
				$\alpha/10^{3}$	2. cm ⁻³ . n	$n^{1-1} = 0$	2222 ± 0.0	006					
0.0	0.0	_	_	0 0000	0 0007	0.0001	0.9982 ± 0.0	000	0 9956	0 9941	0.9922	0.9902	0.9881
0.5	0.5	1.0134	1.0132	1.0137	1.0125	1.0116	1.0108	1.0094	1.0081	1.0066	1.0051	1.0035	1.0022
1.0	1.0	1.0244	1.0244	1.0240	1.0233	1.0222	1.0214	1.0202	1.0187	1.0172	1.0158	1.0138	1.0125
2.0	2.0	1.0471	1.0469	1.0463	1.0453	1.0441	1.0430	1.0418	1.0401	1.0387	1.0371	1.0352	1.0338
3.0	3.0	1.0678	1.0674	1.0664	1.0654	1.0643	1.0631	1.0618	1.0603	1.0587	1.0569	1.0555	1.0390
4.5	4.5	1.0959	1.0950	1.0941	1.0928	1.0915	1.0905	1.0891	1.0877	1.0859	1.0844	1.0830	1.0811
6.0	6.0	1.1217	1.1212	1.1198	1.1188	1.1174	1.1161	1.1146	1.1131	1.1115	1.1101	1.1084	1.1064
8.0	8.0	1.1554	1.1537	1.1526	1.1514	1.1498	1.1485	1.14/0	1.1454	1.1439	1.1423	1.1407	1.1388
14.0	14.0	1.2002	1.1967	1.1971	1.1950	1.1940	1.1925	1.1909	1.1695	1.1070	1.1001	1.1045	1.1620
17.8	17.8	1.2884	1.2864	1.2842	1.2822	1.2802	1.2783	1.2764	1.2746	1.2728	1.2707	1.2689	1.2669
					× –	0.0 - x - 0) 1						
					<i>x</i> ₁ –	$0.9, x_2 = 0$							
0.0	0.0	0.0772	0.0756	g/10 ³ ·	g ² •cm ⁻³ •n	$nol^{-1} = 0.0$	0201 ± 0.0	006	0.05(0	0.0527	0.0400	0.0455	0.0420
0.0	0.0	0.9773	0.9750	0.9732	0.9708	0.9673	0.9637	0.9603	0.9562	0.9527	0.9490	0.9455	0.9420
1.0	0.455	0.9040	0.9854	0.9019	0.9800	0.9894	0.9707	0.9743	0.9721	0.9802	0.9074	0.9049	0.9010
2.0	1.730	1.0163	1.0148	1.0128	1.0109	1.0090	1.0070	1.0047	1.0023	0.9999	0.9974	0.9948	0.9922
3.0	2.596	1.0347	1.0331	1.0312	1.0293	1.0273	1.0253	1.0233	1.0213	1.0194	1.0175	1.0154	1.0136
4.5	3.893	1.0606	1.0587	1.0566	1.0548	1.0530	1.0511	1.0490	1.0470	1.0450	1.0430	1.0409	1.0385
6.0	5.191	1.0842	1.0820	1.0800	1.0781	1.0760	1.0739	1.0718	1.0698	1.0678	1.0659	1.0639	1.0619
8.0	6.922	1.1121	1.1101	1.1079	1.1060	1.1039	1.1017	1.0996	1.0977	1.0955	1.0932	1.0911	1.0890
11.0	9.517	1.150/	1.148/	1.1464	1.1441	1.1420	1.1399	1.13/6	1.1352	1.1337	1.1315	1.1295	1.12/3
14.0	12.115	1.1803	1.1641	1.1820	1.1800	1.1779	1.1739	1.1750	1.1715	1.1093	1.1071	1.1049	1.1028
10.0	15.574	1.2255	1.2227	1.2204	1.2101	0.0 - (1.2157	1.2110	1.2070	1.2074	1.2032	1.2050	1.2007
					$x_1 =$	$0.8, x_2 = 0$).2						
0.0	0.0	0.0510	0.0400	g/10 ³ •	g ² •cm ⁻³ •n	$nol^{-1} = 0.0$	0.024 ± 0.0	007	0.0076	0.0000	0.0105	0.0155	0.0110
0.0	0.0	0.9510	0.9480	0.9450	0.9414	0.9380	0.9346	0.9313	0.9276	0.9238	0.9195	0.9155	0.9112
1.0	0.763	0.9013	0.9504	0.9554	0.9518	0.9405	0.9430	0.9419	0.9382	0.9340	0.9396	0.9267	0.9227
2.0	1.525	0.9866	0.9836	0.9807	0.9772	0.9741	0.9708	0.9677	0.9642	0.9612	0.9571	0.9538	0.9500
3.0	2.288	1.0011	0.9977	0.9945	0.9909	0.9875	0.9840	0.9809	0.9773	0.9739	0.9697	0.9663	0.9623
4.5	3.431	1.0228	1.0198	1.0168	1.0130	1.0099	1.0066	1.0036	1.0002	0.9969	0.9928	0.9893	0.9855
6.0	4.575	1.0424	1.0394	1.0366	1.0332	1.0303	1.0275	1.0253	1.0224	1.0199	1.0163	1.0135	1.0103
8.0	6.100	1.0683	1.0650	1.0623	1.0590	1.0563	1.0534	1.0511	1.0478	1.0452	1.0419	1.0399	1.0369
11.0	8.388 10.675	1.1041	1.1015	1.0988	1.0938	1.0929	1.0903	1.0877	1.0848	1.0821	1.0780	1.0738	1.0720
17.5	13.344	1.1735	1.1699	1.1671	1.1637	1.1613	1.1585	1.1561	1.1532	1.1508	1.1477	1.1451	1.1421
					x. =	$0.7 x_2 = 0$) 3						
				$\sigma/10^{3}$	$m^{2} \cdot cm^{-3} \cdot n$	$no1^{-1} = 0.0$	0.152 ± 0.0	005					
0.0	0.0	0.9316	0 9271	0 9227	0.9187	0.9145	0.9099	0 9053	0 9010	0 8965	0.8920	0 8874	0.8830
0.5	0.341	0.9397	0.9344	0.9300	0.9250	0.9207	0.9156	0.9096	0.9058	0.9012	0.8961	0.8909	0.8859
1.0	0.682	0.9488	0.9425	0.9387	0.9335	0.9289	0.9241	0.9180	0.9144	0.9104	0.9051	0.9001	0.8954
2.0	1.363	0.9627	0.9574	0.9532	0.9493	0.9443	0.9394	0.9336	0.9300	0.9259	0.9208	0.9156	0.9109
3.0	2.045	0.9726	0.9668	0.9625	0.9576	0.9532	0.9485	0.9423	0.9387	0.9343	0.9296	0.9243	0.9195
4.5	3.067	0.9918	0.9863	0.9822	0.9776	0.9736	0.9690	0.9634	0.9600	0.9561	0.9514	0.9467	0.9425
0.0 8.0	4.090	1.0110	1.0005	1.0026	0.9980	0.9942	1.0142	0.9852	1.0058	1.0026	0.9730	0.9694	0.9034
11.0	7.498	1.0675	1.0614	1.0559	1.0509	1.0477	1.0439	1.0389	1.0355	1.0323	1.0286	1.0248	1.0218
14.0	9.542	1.0978	1.0923	1.0887	1.0845	1.0812	1.0770	1.0718	1.0690	1.0654	1.0620	1.0578	1.0542
16.5	11.246	1.1215	1.1161	1.1123	1.1081	1.1047	1.1007	1.0956	1.0927	1.0895	1.0853	1.0821	1.0787
					$x_1 =$	$0.6, x_2 = 0$).4						
				$g/10^3$.	$p^2 \cdot cm^{-3} \cdot n$	$-100^{-1} = 0.000$	0.00000000000000000000000000000000000	004					
0.0	0.0	0.9081	0.9035	0.8993	0.8946	0.8896	0.8851	0.8806	0.8761	0.8714	0.8668	0.8621	0.8573
0.5	0.308	0.9112	0.9065	0.9020	0.8948	0.8889	0.8843	0.8792	0.8744	0.8729	0.8712	0.8705	0.8695
1.0	0.616	0.9184	0.9137	0.9092	0.9022	0.8965	0.8921	0.8872	0.8825	0.8805	0.8791	0.8782	0.8771
2.0	1.232	0.9303	0.9252	0.9206	0.9131	0.9078	0.9047	0.8995	0.8944	0.8924	0.8953	0.8914	0.8884
5.0 4.5	1.849	0.9390	0.9341	0.9297	0.9225	0.9168	0.9127	0.9080	0.9034	0.9020	0.9007	0.8999	0.8995
4.5	2.773	0.9371	0.9329	0.9488	0.9420	0.9300	0.9520	0.9281	0.9238	0.9225	0.9215	0.9206	0.9202
8.0	4,930	0.9995	0.9954	0.9914	0.9849	0.9799	0.9762	0.9722	0.9682	0.9671	0.9669	0.9670	0.9672
11.0	6.778	1.0317	1.0273	1.0236	1.0169	1.0120	1.0085	1.0043	1.0009	1.0010	1.0006	1.0012	1.0019
14.0	8.627	1.0567	1.0527	1.0488	1.0424	1.0375	1.0346	1.0307	1.0268	1.0253	1.0249	1.0251	1.0277
16.0	9.859	1.0766	1.0724	1.0688	1.0624	1.0578	1.0544	1.0504	1.0466	1.0462	1.0457	1.0460	1.0466
					$x_1 =$	$0.5, x_2 = 0$).5						
				$g/10^{3}$.	g ² •cm ⁻³ •n	$nol^{-1} = 0.0$	0.00000000000000000000000000000000000	006					
0.0	0.0	0.8866	0.8821	0.8777	0.8728	0.8685	0.8638	0.8592	0.8548	0.8501	0.8452	0.8405	0.8358
0.5	0.281	0.8880	0.8830	0.8789	0.8722	0.8657	0.8629	0.8571	0.8543	0.8493	0.8435	0.8386	0.8337
1.0	0.562	0.8946	0.8900	0.8867	0.8804	0.8742	0.8716	0.8663	0.8642	0.8592	0.8539	0.8490	0.8443
3.0	1.687	0.9075	0.9035	0.9092	0.9008	0.8973	0.8933	0.8876	0.8845	0.8798	0.8745	0.8668	0.8623

Table 1 Continued

concentra	ation						temperat	ture, <i>t</i> /°C					
aquamolality/m	molality/m	-5	0	5	10	15	20	25	30	35	40	45	50
4.5 6.0 8.0 11.0 14.0 15.2	2.530 3.374 4.498 6.185 7.872 8.547	$\begin{array}{c} 0.9307 \\ 0.9489 \\ 0.9706 \\ 0.9977 \\ 1.0248 \\ 1.0376 \end{array}$	$\begin{array}{c} 0.9261 \\ 0.9442 \\ 0.9663 \\ 0.9931 \\ 1.0206 \\ 1.0333 \end{array}$	$\begin{array}{c} 0.9220 \\ 0.9406 \\ 0.9628 \\ 0.9893 \\ 1.0170 \\ 1.0297 \end{array}$	0.9155 0.9347 0.9568 0.9837 1.0113 1.0239	0.9091 0.9288 0.9507 0.9778 1.0056 1.0181	$\begin{array}{c} 0.9067 \\ 0.9259 \\ 0.9488 \\ 0.9758 \\ 1.0036 \\ 1.0162 \end{array}$	0.9012 0.9206 0.9437 0.9705 0.9988 1.0114	0.8988 0.9185 0.9418 0.9688 0.9970 1.0097	$\begin{array}{c} 0.8941 \\ 0.9141 \\ 0.9376 \\ 0.9647 \\ 0.9929 \\ 1.0062 \end{array}$	0.8888 0.9091 0.9325 0.9602 0.9882 1.0016	0.8839 0.9045 0.9282 0.9562 0.9842 0.9973	0.8794 0.9004 0.9241 0.9528 0.9807 0.9943
					$x_1 =$	$0.4, x_2 = 0$	0.6						
				g /10 ³ •	g ² •cm ⁻³ •n	$nol^{-1} = 0.0$	0.00000000000000000000000000000000000	0008					
0.0 0.5 1.0 2.0 3.0 4.5 6.0 8.0 11.0 14.0	$\begin{array}{c} 0.0\\ 0.259\\ 0.517\\ 1.034\\ 1.551\\ 2.327\\ 3.102\\ 4.136\\ 5.687\\ 7.238\end{array}$	$\begin{array}{c} 0.8677\\ 0.8667\\ 0.8729\\ 0.8858\\ 0.8977\\ 0.9106\\ 0.9242\\ 0.9462\\ 0.9753\\ 0.9998 \end{array}$	0.8634 0.8620 0.8687 0.8811 0.8934 0.9052 0.9202 0.9418 0.9710 0.9955	$\begin{array}{c} 0.8588\\ 0.8576\\ 0.8641\\ 0.8768\\ 0.8890\\ 0.9013\\ 0.9165\\ 0.9375\\ 0.9672\\ 0.9917\end{array}$	$\begin{array}{c} 0.8541\\ 0.8510\\ 0.8578\\ 0.8704\\ 0.8829\\ 0.8929\\ 0.9101\\ 0.9313\\ 0.9613\\ 0.9862 \end{array}$	$\begin{array}{c} 0.8495\\ 0.8474\\ 0.8545\\ 0.8672\\ 0.8800\\ 0.8894\\ 0.9073\\ 0.9288\\ 0.9587\\ 0.9842 \end{array}$	$\begin{array}{c} 0.845\\ 0.8428\\ 0.8497\\ 0.8625\\ 0.8755\\ 0.8858\\ 0.9029\\ 0.9247\\ 0.9547\\ 0.9804 \end{array}$	0.8406 0.8385 0.8457 0.8585 0.8708 0.8814 0.8993 0.9211 0.9515 0.9779	0.8361 0.8340 0.8409 0.8541 0.8676 0.8772 0.8952 0.9171 0.9481 0.9745	$\begin{array}{c} 0.8314\\ 0.8287\\ 0.8356\\ 0.8489\\ 0.8627\\ 0.8735\\ 0.8906\\ 0.9124\\ 0.9435\\ 0.9707\\ \end{array}$	$\begin{array}{c} 0.8269\\ 0.8242\\ 0.8309\\ 0.8446\\ 0.8589\\ 0.8682\\ 0.8866\\ 0.9084\\ 0.9399\\ 0.9675\end{array}$	$\begin{array}{c} 0.8224\\ 0.8197\\ 0.8264\\ 0.8406\\ 0.8547\\ 0.8636\\ 0.8826\\ 0.9047\\ 0.9367\\ 0.9643\\ \end{array}$	0.8177 0.8139 0.8213 0.8357 0.8496 0.8580 0.8778 0.9000 0.9321 0.9607
					$x_1 =$	$0.3, x_2 = 0$).7						
				g /10 ³ ·	g ² •cm ⁻³ •n	$nol^{-1} = 0.0$	0134 ± 0.0	8008					
$\begin{array}{c} 0.0\\ 0.5\\ 1.0\\ 2.0\\ 3.0\\ 4.5\\ 6.0\\ 8.0\\ 11.0\\ 13.5 \end{array}$	$\begin{array}{c} 0.0\\ 0.239\\ 0.479\\ 0.957\\ 1.436\\ 2.153\\ 2.871\\ 3.828\\ 5.264\\ 6.460\end{array}$	0.8522 0.8495 0.8559 0.8673 0.8787 0.8963 0.9116 0.9276 0.9536 0.9757	$\begin{array}{c} 0.8477\\ 0.8447\\ 0.8509\\ 0.8624\\ 0.8743\\ 0.8912\\ 0.9074\\ 0.9234\\ 0.9492\\ 0.9713 \end{array}$	$\begin{array}{c} 0.8429\\ 0.8403\\ 0.8465\\ 0.8582\\ 0.8700\\ 0.8873\\ 0.9034\\ 0.9197\\ 0.9452\\ 0.9672\end{array}$	$\begin{array}{c} 0.8385\\ 0.8358\\ 0.8419\\ 0.8539\\ 0.8661\\ 0.8833\\ 0.9000\\ 0.9160\\ 0.9416\\ 0.9634 \end{array}$	$\begin{array}{c} 0.8339\\ 0.8311\\ 0.8368\\ 0.8491\\ 0.8613\\ 0.8787\\ 0.8956\\ 0.9117\\ 0.9374\\ 0.9591 \end{array}$	$\begin{array}{c} 0.8294\\ 0.8272\\ 0.8332\\ 0.8454\\ 0.8575\\ 0.8753\\ 0.8921\\ 0.9080\\ 0.9343\\ 0.9560\end{array}$	$\begin{array}{c} 0.8251\\ 0.8228\\ 0.8286\\ 0.8409\\ 0.8532\\ 0.8709\\ 0.8881\\ 0.9038\\ 0.9305\\ 0.9526\end{array}$	0.8206 0.8175 0.8233 0.8359 0.8486 0.8662 0.8836 0.8999 0.9263 0.9486	$\begin{array}{c} 0.816\\ 0.8128\\ 0.8187\\ 0.8314\\ 0.8444\\ 0.8621\\ 0.8796\\ 0.8967\\ 0.9226\\ 0.9449 \end{array}$	$\begin{array}{c} 0.8111\\ 0.8074\\ 0.8138\\ 0.8263\\ 0.8396\\ 0.8573\\ 0.8750\\ 0.8915\\ 0.9186\\ 0.9408 \end{array}$	0.8066 0.8027 0.8091 0.8219 0.8355 0.8527 0.8527 0.8709 0.8875 0.9152 0.9373	0.8019 0.7978 0.8038 0.8175 0.8317 0.8487 0.8665 0.8836 0.9114 0.9332
					$x_1 =$	$0.2, x_2 = 0$	0.8						
				g /10 ³ •	g ² •cm ⁻³ •n	$nol^{-1} = 0.0$	0.00000000000000000000000000000000000	0007					
$\begin{array}{c} 0.0\\ 0.5\\ 1.0\\ 2.0\\ 3.0\\ 4.5\\ 6.0\\ 8.0\\ 11.0\\ 13.0 \end{array}$	$\begin{array}{c} 0.0\\ 0.223\\ 0.445\\ 0.891\\ 1.336\\ 2.004\\ 2.672\\ 3.563\\ 4.899\\ 5.789\end{array}$	$\begin{array}{c} 0.8382\\ 0.8369\\ 0.8435\\ 0.8544\\ 0.8647\\ 0.8812\\ 0.8965\\ 0.9159\\ 0.9394\\ 0.9534 \end{array}$	$\begin{array}{c} 0.8337\\ 0.8320\\ 0.8381\\ 0.8504\\ 0.8605\\ 0.8770\\ 0.8924\\ 0.9124\\ 0.9335\\ 0.9497\end{array}$	$\begin{array}{c} 0.829\\ 0.8277\\ 0.8350\\ 0.8462\\ 0.8568\\ 0.8733\\ 0.8890\\ 0.9095\\ 0.9304\\ 0.9463\end{array}$	$\begin{array}{c} 0.8247\\ 0.8229\\ 0.8278\\ 0.8404\\ 0.8513\\ 0.8681\\ 0.8681\\ 0.9045\\ 0.9255\\ 0.9414\\ x_1 = \end{array}$	$\begin{array}{c} 0.8201\\ 0.8174\\ 0.8227\\ 0.8350\\ 0.8461\\ 0.8628\\ 0.8789\\ 0.8994\\ 0.9218\\ 0.9367\\ 0.1, x_2 = 0\end{array}$	0.8156 0.8128 0.8128 0.8308 0.8422 0.8591 0.8752 0.8959 0.9170 0.9332	0.811 0.8072 0.8140 0.8260 0.8373 0.8545 0.8707 0.8915 0.9129 0.9287	$\begin{array}{c} 0.806\\ 0.8019\\ 0.8084\\ 0.8210\\ 0.8324\\ 0.8499\\ 0.8660\\ 0.8870\\ 0.9086\\ 0.9242 \end{array}$	$\begin{array}{c} 0.8014\\ 0.7973\\ 0.8043\\ 0.8166\\ 0.8282\\ 0.8459\\ 0.8620\\ 0.8832\\ 0.9069\\ 0.9207\end{array}$	0.7968 0.7903 0.7976 0.8100 0.8222 0.8398 0.8558 0.8771 0.8977 0.9147	$\begin{array}{c} 0.7922\\ 0.7873\\ 0.7949\\ 0.8074\\ 0.8200\\ 0.8375\\ 0.8534\\ 0.8744\\ 0.8952\\ 0.9129\end{array}$	0.7875 0.7842 0.7912 0.8040 0.8177 0.8343 0.8505 0.8719 0.8951 0.9104
				g /10 ³ •	g ² •cm ⁻³ •n	$nol^{-1} = 0.0$	0.00000000000000000000000000000000000	0006					
0.0 0.5 1.0 2.0 3.0 4.5 6.0 8.0 11.0	$\begin{array}{c} 0.0\\ 0.208\\ 0.416\\ 0.833\\ 1.249\\ 1.874\\ 2.499\\ 3.332\\ 4.581 \end{array}$	$\begin{array}{c} 0.8249\\ 0.823\\ 0.827\\ 0.8387\\ 0.8506\\ 0.8638\\ 0.8802\\ 0.8983\\ 0.9175\end{array}$	0.8203 0.8172 0.8226 0.8341 0.8451 0.8576 0.8754 0.8922 0.9114	0.8159 0.8129 0.8185 0.8304 0.8409 0.854 0.8722 0.8923 0.9079	$\begin{array}{c} 0.8114\\ 0.8084\\ 0.8145\\ 0.8258\\ 0.8373\\ 0.8494\\ 0.8685\\ 0.8883\\ 0.9034\\ x_1 = \end{array}$	$\begin{array}{c} 0.8069\\ 0.8035\\ 0.8095\\ 0.8213\\ 0.8322\\ 0.8443\\ 0.8641\\ 0.8842\\ 0.8994\\ 0.0, x_2=1 \end{array}$	0.8021 0.7988 0.8048 0.8165 0.8276 0.8398 0.8595 0.8797 0.8952 .0	$\begin{array}{c} 0.7977\\ 0.7941\\ 0.8002\\ 0.8118\\ 0.8232\\ 0.8349\\ 0.8558\\ 0.8757\\ 0.8915 \end{array}$	$\begin{array}{c} 0.793 \\ 0.7891 \\ 0.7954 \\ 0.807 \\ 0.8187 \\ 0.8304 \\ 0.8514 \\ 0.8715 \\ 0.8872 \end{array}$	$\begin{array}{c} 0.7882\\ 0.784\\ 0.7903\\ 0.8021\\ 0.8139\\ 0.826\\ 0.847\\ 0.8671\\ 0.8828\\ \end{array}$	$\begin{array}{c} 0.7836\\ 0.7795\\ 0.786\\ 0.7981\\ 0.8101\\ 0.822\\ 0.8433\\ 0.8635\\ 0.8794 \end{array}$	$\begin{array}{c} 0.779\\ 0.775\\ 0.7817\\ 0.7937\\ 0.806\\ 0.8195\\ 0.8394\\ 0.8597\\ 0.8759\\ \end{array}$	0.7743 0.7701 0.7785 0.7895 0.8022 0.816 0.8355 0.8558 0.8724
				g /10 ³ •	g ² •cm ⁻³ •n	$rol^{-1} = 0.0$	0131 ± 0.0	0008					
0.0 0.5 1.0 2.0 3.0 4.5 6.0 8.0 10.0	$\begin{array}{c} 0.0\\ 0.196\\ 0.391\\ 0.782\\ 1.173\\ 1.760\\ 2.347\\ 3.129\\ 3.911 \end{array}$	0.8111 0.8109 0.8179 0.8284 0.8381 0.8545 0.8694 0.8877 0.9078	$\begin{array}{c} 0.8068\\ 0.8051\\ 0.8106\\ 0.8213\\ 0.8325\\ 0.847\\ 0.8631\\ 0.8824\\ 0.9011 \end{array}$	0.8026 0.8032 0.8103 0.8215 0.8341 0.8455 0.8645 0.8836 0.9021	0.7984 0.7961 0.8009 0.8122 0.8234 0.8374 0.8542 0.8757 0.8918	0.7942 0.7897 0.7959 0.8075 0.8175 0.8316 0.8316 0.8491 0.8684 0.8869	0.7899 0.786 0.7919 0.8033 0.8136 0.8288 0.8454 0.8647 0.8834	0.7857 0.7824 0.7883 0.7994 0.8103 0.8238 0.8423 0.8619 0.8805	0.7814 0.7765 0.7825 0.7947 0.8048 0.8195 0.8371 0.8567 0.8754	$\begin{array}{c} 0.7771\\ 0.7738\\ 0.7797\\ 0.7912\\ 0.8023\\ 0.8166\\ 0.8356\\ 0.8547\\ 0.8736\end{array}$	0.7728 0.773 0.779 0.7907 0.8019 0.8158 0.8352 0.8547 0.8737	$\begin{array}{c} 0.7679\\ 0.7722\\ 0.7786\\ 0.7909\\ 0.8018\\ 0.8168\\ 0.8349\\ 0.8539\\ 0.874 \end{array}$	0.7634 0.7687 0.7743 0.7861 0.7966 0.811 0.8304 0.8513 0.8694

the present work, comprehensive data on density (ρ), viscosity (η), and electrical conductivity (κ) for *the system* have been presented over the entire ranges of solvent composition and LiCl solubility from (-5 to +50) °C. Excess molar volumes (V^{E}) for *the mixture* at a series of compositions have also been determined whose isotherms exhibit minima at the same common water mole fraction (x_1) of 0.6. From the temperature dependence of η and Λ_m , respective activation energies have been determined and mutually compared. In the case that conductivity is only governed by the solution viscosity, a correspondence should exist between the activation energies

Experimental Section

Chemicals and Preparation of Samples. Chemicals of high grade purity were employed for the study. Water (room-temperature electrical conductivity between (1 and 2) μ S·cm⁻¹) used as one of the solvent components was freshly prepared after double distillation carried out in an all-quickfit apparatus in the presence of a few crystals of KMnO₄ and a small amount of NaOH.³⁷ Ethanol (Merck, purity \geq 99 %) was used without further drying because all the LiCl solutions were to be prepared in *the mixtures* (except those in neat ethanol). A proton NMR spectrum of the ethanol measured at 32 °C exhibited no extra

Figure 1. (a-d) Densities, ρ , fitted to LiCl aquamolality, m, in the isotherm: $\rho(m) = d_0 + d_1 \cdot m + d_2 \cdot m^2$ from -5 to +50 at 5 °C intervals for solutions prepared in aqueous ethanol of water mole fractions $x_1 =$: (a) 1.0, (b) 0.7, (c) 0.4, and (d) 0.1 (refer to Table 2 for d values).

Figure 2. Dependence of the density index, $g(x_1)$, on water mole fractions, x_1 , for the system $H_2O + C_2H_5OH + LiCl$.

peak, and also a triplet peak was observed for its $OH.^{38,39}$ "Anhydrous" LiCl (Merck, purity > 99 % also verified by atomic absorption spectrophotometry) employed in the study was first kept in an electric oven at about 200 °C for several hours and finally stored in a desiccator under low pressure.

Suitable volumes of the samples were carefully prepared (with minimum possible atmospheric exposure) by adding together precalculated amounts of the individual components in closed vessels and subsequently stored in sealed bottles. An ER-180A digital balance from A & D, Japan (detection limit 0.1 mg) was employed for the weighings. As in many previous works,^{36,40–43} the solute (LiCl) concentration has been expressed in the

temperature-independent aquamolality scale, m (moles of solute per 55.5 moles of the solvent).

Temperature Controlling. All the density measurements were carried out in thermostatic conditions. For the set of measurements on a given sample, temperature was successively raised through intervals of 5 °C over the employed range from (-5 to +50) °C. The required temperature of the sample (submerged in a bath of a water-ethanol mixture) was maintained by circulating the mixture using a (HAAKE F3, Germany) chiller equipped with an automatic temperature-controlling sensor having a detection limit of \pm 0.02 °C. Besides a digital display on the chiller, the bath temperature was also simultaneously

Table 2.	Coefficients (in Appropriate Units) of the Equation $\rho(t, m) = d_0(t) + d_1(t) \cdot m + d_2(t) \cdot m$	² at Different	Temperatures in	Binary N	lixtures
of Water	(1) and Ethanol (2) Having Mole Fractions x_1 and x_2 with <i>m</i> Being the LiCl Aquamola	lity			

						temperat	ure, t/°C					
coefficients	-5	0	5	10	15	20	25	30	35	40	45	50
					$x_1 =$	$1.0, x_2 = 0$	0.0					
d_0	1.0029	1.0031	1.0000	0.9996	0.9993	0.9981	0.9970	0.9958	0.9942	0.9921	0.9900	0.9882
d_1	0.0218	0.0216	0.0221	0.0220	0.0217	0.0217	0.0217	0.0216	0.0216	0.0218	0.0219	0.0214
d_2	-0.0003	-0.0003	-0.0004	-0.0004	-0.0003	-0.0003	-0.0003	-0.0003	-0.0003	-0.0004	-0.0004	-0.0003
					$x_1 =$	$0.9, x_2 = 0$).1					
d_0	0.9746	0.9733	0.9719	0.9700	0.9682	0.9660	0.9641	0.9614	0.9589	0.9563	0.9532	0.9501
d_1	0.0202	0.0201	0.0199	0.0200	0.0199	0.0199	0.0199	0.0200	0.0202	0.0203	0.0205	0.0207
d_2	-0.0004	-0.0004	-0.0003	-0.0003	-0.0003	-0.0003	-0.0003	-0.0004	-0.0004	-0.0004	-0.0004	-0.0004
					$x_1 =$	$0.8, x_2 = 0$).2					
d_0	0.9519	0.9489	0.9459	0.9423	0.9389	0.9355	0.9322	0.9285	0.9247	0.9204	0.9164	0.9121
d_1	0.0164	0.0165	0.0165	0.0165	0.0166	0.0167	0.0168	0.0169	0.0171	0.0173	0.0175	0.0177
d_2	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0003	-0.0003
					$x_1 =$	$0.7, x_2 = 0$).3					
d_0	0.9325	0.9280	0.9236	0.9196	0.9154	0.9108	0.9062	0.9019	0.8974	0.8929	0.8883	0.8839
d_1	0.0143	0.0143	0.0145	0.0145	0.0146	0.0148	0.0149	0.0151	0.0154	0.0156	0.0157	0.0160
d_2	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002
					$x_1 =$	$0.6, x_2 = 0$).4					
d_0	0.9090	0.9044	0.9002	0.8955	0.8905	0.8860	0.8815	0.8770	0.8723	0.8677	0.8630	0.8582
d_1	0.0126	0.0128	0.0128	0.0127	0.0129	0.0132	0.0133	0.0134	0.0140	0.0149	0.0155	0.0163
d_2	-0.0001	-0.0001	-0.0001	-0.0001	-0.0001	-0.0001	-0.0001	-0.0001	-0.0002	-0.0002	-0.0002	-0.0003
					$x_1 =$	$0.5, x_2 = 0$).5					
d_{0}	0.8866	0.8821	0.8777	0.8728	0.8685	0.8638	0.8592	0.8548	0.8501	0.8452	0.8405	0.8358
d_1	0.0121	0.0123	0.0124	0.0123	0.0123	0.0127	0.0127	0.0131	0.0132	0.0134	0.0133	0.0135
d_2	-0.0001	-0.0001	-0.0001	-0.0001	-0.0001	-0.0001	-0.0001	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002
					$x_1 =$	$0.4, x_2 = 0$).6					
d_0	0.8677	0.8634	0.8588	0.8541	0.8495	0.8450	0.8406	0.8361	0.8314	0.8269	0.8224	0.8177
d_1	0.0124	0.0124	0.0126	0.0123	0.0126	0.0128	0.0128	0.013	0.0132	0.0133	0.0134	0.0134
d_2	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002
					$x_1 =$	$0.3, x_2 = 0$).7					
d_0	0.8522	0.8477	0.8429	0.8385	0.8339	0.8294	0.8251	0.8206	0.8160	0.8111	0.8066	0.8019
d_1	0.0122	0.0123	0.0125	0.0127	0.0129	0.0131	0.0131	0.0132	0.0134	0.0136	0.0137	0.0139
d_2	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002	-0.0003
					$x_1 =$	$0.2, x_2 = 0$).8					
d_0	0.8382	0.8337	0.8290	0.8247	0.8201	0.8156	0.8110	0.8060	0.8014	0.7968	0.7922	0.7875
d_1	0.0125	0.0126	0.0129	0.0128	0.0128	0.0130	0.0131	0.0134	0.0135	0.0134	0.0138	0.0143
d_2	-0.0002	-0.0002	-0.0003	-0.0002	-0.0002	-0.0002	-0.0003	-0.0003	-0.0003	-0.0003	-0.0003	-0.0003
					$x_1 =$	$0.1, x_2 = 0$).9					
d_0	0.8249	0.8203	0.8159	0.8114	0.8069	0.8021	0.7977	0.7930	0.7882	0.7836	0.7790	0.7743
d_1	0.0120	0.0121	0.0124	0.0127	0.0127	0.0129	0.0129	0.0131	0.0133	0.0135	0.0139	0.0142
d_2	-0.0003	-0.0003	-0.0003	-0.0003	-0.0003	-0.0003	-0.0003	-0.0003	-0.0003	-0.0003	-0.0004	-0.0004
					$x_1 =$	$0.0, x_2 = 1$.0					
d_0	0.8111	0.8068	0.8026	0.7984	0.7942	0.7899	0.7857	0.7814	0.7771	0.7728	0.7679	0.7634
d_1	0.0125	0.0120	0.0127	0.0120	0.0116	0.0119	0.0119	0.0119	0.0122	0.0130	0.0143	0.0141
d_2	-0.0002	-0.0002	-0.0002	-0.0002	-0.0001	-0.0002	-0.0001	-0.0001	-0.0002	-0.0002	-0.0003	-0.0003

monitored using an ASTM-calibrated thermometer [(0 to 100) °C] having a graduation of 0.01 °C. Although samples attained the required temperatures in about 10 min, they were allowed to thermally equilibrate in the bath for at least 20 min before starting the measurements.

Density Measurement. Densities were determined using 10 mL Pyrex density bottles which were calibrated at each working temperature by employing water and toluene (Merck, purity > 99.9 %) as references. Toluene was used without further purification as it did not exhibit any extra peak in its NMR spectrum. The sample and the density bottles were allowed to attain equilibrium in the preadjusted thermal bath. Since the laboratory temperature was maintained around 25 °C throughout the experiments, the colder baths were accordingly adjusted at slightly lower than the required temperatures to allow compensation due to heat exchange during weighing of the density bottle (and conversely at higher temperatures for the hotter baths); nevertheless, weighings were done swiftly, and all readings were repeated at least three times. Whereas the maximum difference

of the required and actual temperatures could be ± 0.1 °C, uncertainty in the density value could be ± 0.0002 g·cm⁻³. Some selected density values at various temperatures were also monitored on a DMA-4500, Anton Paar (Austria) vibrating tube density meter having a resolution⁴⁴ of 5·10⁻⁵ g·cm⁻³. The density values up to the fourth decimal position were in agreement with our two kinds of measurements.

Viscosity Measurement. Viscosities at different temperatures were measured in a specially designed transparent glass bath which ensured placing of the viscometer and an ASTM-calibrated thermometer at their same respective positions during each measurement. The bath temperature was maintained by circulating the thermostatted ethanol—water mixture through it. For each measurement, a 20 mL sample loaded in the viscometer was first allowed to attain the required temperature in the bath. Since viscosity values covered a considerably wide range (from (0.55 to 181) mPa·s) on varying temperature and LiCl concentration in our study, Ubbelhode viscometers (each \sim 20 mL capacity) of three different capillary bores were employed. The

Figure 3. Excess molar volume, V^{E} , plotted against water mole fraction, x_{1} , for the aqueous mixtures of ethanol.

Table 3. Excess Molar Volume $(V^{E}/\text{cm}^{3} \cdot \text{mol}^{-1})$ for the Aqueous Mixtures of Ethanol at Different Temperatures and Water Mole Fractions $(x_{1})^{a}$

temp					<i>x</i> ₁				
°C	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1
-5	-0.601	-0.938	-1.287	-1.340	-1.236	-1.087	-0.937	-0.724	-0.417
0	-0.586	-0.913	-1.234	-1.292	-1.198	-1.065	-0.911	-0.703	-0.393
5	-0.561	-0.892	-1.186	-1.259	-1.164	-1.027	-0.866	-0.666	-0.377
10	-0.542	-0.860	-1.154	-1.211	-1.111	-0.986	-0.844	-0.654	-0.355
15	-0.504	-0.839	-1.121	-1.156	-1.087	-0.952	-0.812	-0.624	-0.332
20	-0.470	-0.823	-1.081	-1.125	-1.052	-0.929	-0.793	-0.607	-0.296
25	-0.443(-0.454)	-0.812	-1.041	-1.093(-1.096)	-1.019	-0.907	-0.780	-0.486	-0.281(-0.267)
30	-0.407	-0.797	-1.018	-1.068	-1.001	-0.888	-0.763	-0.563	-0.252
35	-0.384	-0.779	-0.987	-1.035	-0.970	-0.859	-0.740	-0.541	-0.229
40	-0.363	-0.753	-0.962	-1.009	-0.934	-0.842	-0.702	-0.520	-0.214
45	-0.348	-0.737	-0.934	-0.981	-0.906	-0.826	-0.687	-0.493	-0.205
50	-0.335	-0.714	-0.914	-0.949	-0.879	-0.799	-0.661	-0.465	-0.183

^a Some literature values are also given in parentheses.

Table 4. Values of $(-\beta \cdot 10^{4/0} \text{C}^{-1})$ as Determined from $\rho(t) = \rho(25) \cdot e^{\beta(t-25)}$ for the System (LiCl + Water + Ethanol) with x_1 and m Being Water Mole Fraction in the Solvent Mixture and LiCl Aquamolality, Respectively^{*a*}

						x_1					
m	1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.0
0.0	2.71	6.89	7.70	9.69	10.37	10.67	10.76	11.01	11.42	11.5	11.4
0.5	2.23	6.70	7.97	9.28	8.86	10.32	10.41	10.57	11.33	11.2	10.7
1.0	2.24	6.88	7.33	9.01	8.69	9.32	10.20	10.63	11.05	10.5	10.5
2.0	2.45	6.72	6.84	8.73	8.24	9.61	9.69	10.02	10.46	10.4	9.9
3.0	3.51	6.13	7.09	8.80	8.25	10.03	9.12	9.37	9.77	10.0	9.8
4.5	2.50	6.02	6.72	7.93	7.54	9.12	9.73	9.22	9.43	9.8	9.6
6.0	2.53	5.87	5.63	7.21	6.90	8.45	8.52	8.48	9.14	8.8	8.8
8.0	2.60	5.90	5.40	6.78	6.32	7.76	8.22	8.16	8.51	8.2	8.5
11.0	2.72	5.83	5.25	6.63	5.67	7.28	7.38	7.56	8.30	_	_
14.0	2.81	5.86	4.90	6.12	5.59	7.01	-	-	-	-	-
	3.01 (17.8)	5.50 (18.0)	4.82 (17.5)	5.91 (16.5)	5.52 (16.0)	6.80 (15.2)	6.42 (14.0)	7.40 (13.5)	8.02 (13.0)	8.4 (11.0)	8.2 (10.0)
σ	± 0.09	± 0.09	± 0.08	± 0.09	± 0.09	± 0.09	± 0.07	± 0.06	± 0.08	± 0.1	± 0.32

^{*a*} Highest *m* values employed for the mixtures are given in parentheses, and the corresponding standard deviations (σ) of the β -values are given at the bottom of each column.

viscometers were standardized using 20 °C literature values^{1,45} of water (1.002), nitrobenzene (1.980), and aniline (4.467 mPa • s). Viscosities of the references were also measured from time to time as a check. For still higher viscosities, a previously measured solution served as the reference for the next one. For each measurement, the flow time taken was an average of at least three runs, and the time could be read with an estimated uncertainty within \pm 0.02 s. The maximum uncertainties in the viscosity measurements (as could be estimated from the 20 °C reported data of the solvent mixtures¹) are within \pm 1 %.

Electrical Conductivity Measurement. A CyberScan CON500 conductivity meter from Eutech Instruments, Singapore (with reported resolution of 0.05 % and inaccuracy within ± 1 % of the given full scale), served to measure electrical conductivity. The conductivity meter was equipped with a thermal sensor along with provision of an automatic compensation for temperature variation. The κ values were directly measured employing any one of the five scales of the instrument covering the range from $1 \,\mu \text{S} \cdot \text{cm}^{-1}$ to 199.9 mS·cm⁻¹ (also the maximum readable value). Although

Table 5.	Viscosities $(\eta/mPa \cdot s)$ at	Different Temperatur	res and LiCl Aquan	nolalities (m) in Bin	ary Mixtures of Wa	ater (1) and Ethano	l (2) Having
Mole Fra	ctions x_1 and x_2						

concentration					te	mperature,	t/°C					
	-5	0	5	10	15	20	25	30	35	40	45	50
	-		-		1.0	0.0						
0.0			1.510	1 200	$x_1 = 1.0, x_2$	$_{2} = 0.0$	0.004	0.700	0.700	0 (55	0.500	0.549
0.0	-	1.044	1.519	1.308	1.140	1.005	0.894	0.799	0.723	0.655	0.599	0.548
0.5	2.273	1.944	1.663	1.424	1.243	1.08/	0.970	0.866	0.782	0.722	0.668	0.625
1.0	2.554	2.107	1.784	1.518	1.346	1.160	1.052	0.929	0.834	0.774	0.714	0.665
2.0	2.831	2.370	2.000	1.701	1.502	1.308	1.105	1.047	0.941	0.800	0.802	0.747
3.0	3.191	2.081	2.200	1.930	1.729	1.495	1.539	1.239	1.085	0.977	0.910	0.859
4.5	3.049	3.133	2.090	2.303	2.034	1.///	1.380	1.422	1.280	1.1//	1.070	1.005
0.0	4.401	5.815	5.236	2.777	2.432	2.151	1.900	1./15	1.352	1.400	1.295	1.194
8.U 11.0	0.755	5.744 0.101	4.899	4.170	5.620	3.199 4.808	2.800	2.460	2.230	2.071	2.860	1.742
11.0	10.040	9.191	12 160	10.070	0.142	4.090	4.292	5.612	5 2 2 2	5.091 4.812	2.809	2.090
14.0	10.905	24.088	21 789	10.970	9.142	1/ 900	12 690	11 529	10.462	4.012	9.094	9.265
17.0	28.000	24.900	21.700	19.002	17.145	14.009	12.060	11.336	10.402	9.741	0.904	8.205
				ς	$x_1 = 0.9, x_2$	$_{2} = 0.1$						
0.0	6.025	4.997	4.089	3.340	2.706	2.268	1.920	1.656	1.448	1.271	1.121	0.975
0.5	6.601	5.372	4.406	3.614	2.924	2.473	2.090	1.811	1.551	1.361	1.185	1.041
1.0	7.317	5.872	4.703	3.852	3.181	2.652	2.247	1.950	1.708	1.459	1.288	1.115
2.0	7.802	6.321	5.118	4.196	3.425	2.875	2.569	2.094	1.809	1.533	1.369	1.203
3.0	8.355	6.895	5.751	4.695	3.832	3.207	2.744	2.352	1.985	1.669	1.472	1.296
4.5	10.453	8.678	7.206	5.853	5.086	4.261	3.707	3.207	2.852	2.506	2.315	2.048
6.0	11.283	9.824	8.554	7.283	6.125	5.115	4.387	3.864	3.372	3.075	2.879	2.492
8.0	17.824	14.459	11.724	9.516	7.844	6.608	5.629	5.221	4.252	3.750	3.429	3.154
11.0	33.686	26.232	20.525	16.479	12.406	10.551	8.894	7.648	6.640	5.833	5.280	4.782
14.0	60.400	46.020	35.471	27.642	20.615	17.491	14.560	12.697	11.231	9.266	8.272	7.470
18.0	115.642	88.450	67.556	51.851	37.369	31.211	25.390	21.732	18.914	15.286	13.943	12.183
				,	$x_1 = 0.8, x_2$	$_{2} = 0.2$						
0.0	7.549	6.169	5.037	4.102	3.433	2.841	2.450	2.101	1.772	1.557	1.369	1.202
0.5	8.076	6.618	5.425	4.471	3.704	3.085	2.595	2.257	1.907	1.605	1.437	1.285
1.0	8.690	7.115	5.839	4.821	4.038	3.400	2.744	2.392	2.072	1.761	1.532	1.314
2.0	9.689	7.892	6.501	5.256	4.342	3.634	3.068	2.601	2.251	1.901	1.691	1.438
3.0	13.300	10.558	8.398	6.656	5.348	4.466	3.759	3.238	2.793	2.460	2.156	1.924
4.5	15.579	12.442	9.976	7.943	6.425	5.380	4.546	3.915	3.323	2.936	2.498	2.185
6.0	20.010	15.577	12.128	9.704	7.872	6.598	5.565	4.805	4.115	3.582	3.135	2.701
8.0	29.226	22.508	17.425	13.738	10.239	8.634	7.305	6.609	5.419	4.759	4.201	3.787
11.0	50.673	38.717	29.934	23.195	17.380	14.550	12.092	10.332	8.820	7.707	6.782	6.157
14.0	93.315	69.558	52.975	40.751	29.682	24.752	20.307	17.455	15.191	12.407	11.300	9.624
17.5	184.015	137.485	102.739	76.793	54.108	42.847	35.508	29.811	25.788	20.559	18.467	15.922
				,	$x_1 = 0.7, x_2$	= 0.3						
0.0	7.172	5.947	4.933	4.093	3.372	2.842	2.350	2.040	1.780	1.560	1.371	1.170
0.5	7.668	6.365	5.428	4.487	3.632	3.051	2.610	2.234	1.935	1.669	1.435	1.251
1.0	8.276	6.898	5.778	4.759	3.928	3.217	2.738	2.395	2.019	1.724	1.539	1.361
2.0	9.651	7.889	6.554	5.341	4.340	3.653	3.134	2.720	2.321	1.975	1.695	1.523
3.0	13.241	10.698	8.599	6.926	5.683	4.765	4.114	3.582	3.002	2.641	2.319	1.975
4.5	16.264	13.142	10.598	8.468	6.918	5.826	4.941	4.270	3.671	3.189	2.791	2.413
6.0	20.370	16.269	13.050	10.400	8.486	7.137	6.003	5.108	4.502	3.921	3.435	2.980
8.0	32.411	25.185	19.554	15.375	11.527	9.708	8.265	7.143	6.157	5.419	4.832	4.174
11.0	57.668	46.354	34.910	27.140	20.262	17.087	14.171	12.292	10.841	8.913	7.857	7.000
14.0	128.627	96.395	72.165	54.823	39.567	32.693	26.659	22.650	19.673	15.779	14.234	12.361
16.5	214.294	159.709	119.043	88.746	62.740	51.068	40.735	34.304	29.270	23.151	20.749	17.691
				,	$x_1 = 0.6 x_2$	= 0.4						
0.0	5 931	4 978	4 176	3 499	2 922	2 463	2 089	1 812	1 582	1 4 3 0	1 270	1 140
0.5	6 377	5 358	4 497	3 767	3 127	2.103	2 250	1.012	1.706	1 492	1 341	1 186
1.0	6 889	5 819	4 841	4 046	3 379	2.041	2.230	2 100	1.825	1 591	1 423	1.100
2.0	7.975	6.711	5.621	4.660	3.896	3.275	2.794	2.420	2.108	1.803	1.610	1.421
3.0	11.736	9.552	7.769	6.321	5.182	4.367	3.708	3,191	2.760	2.422	2.185	1.964
4.5	15.485	12.347	9.834	8.011	6.568	5.551	4.691	4.063	3.495	3.074	2.770	2.490
6.0	21.833	17.208	13.529	10.918	8.530	7.378	6.146	5.070	4.368	3.820	3.497	3.059
8.0	32.700	25.512	19.860	15.586	11.686	10.045	8.413	7.227	6.210	5.454	4.902	4.289
11.0	66.130	50,701	38.662	29.881	22.074	18.596	15.216	13.179	11.672	9.429	8.456	7.319
14.0	147.813	111.617	84.103	63.494	45.490	37.249	30.118	25.190	22.061	17.464	15.544	13.483
16.0	300.611	222.805	165.149	122.426	84.843	69.094	54.459	44.644	37.475	29.651	26.232	22.153
				-	0 -	- 0.5				-	-	
0.0	4 000	4 102	2 510	2 005	$x_1 = 0.5, x_2$	2 = 0.5	1 0 4 0	1 500	1 407	1 070	1 1 40	1.020
0.0	4.829	4.125	3.318	2.995	2.339	2.133	1.840	1.598	1.40/	1.270	1.140	1.020
0.5	5.021	4.441	5.829	3.202	2./33	2.340	2.007	1./54	1.541	1.548	1.211	1.0/4
2.0	J.821 6.925	4.915	4.138	5.527	2.980	2.3/1	2.191	1.947	1./33	1.4/0	1.541	1.148
2.0	10.000	J.//1 Q 5/1	4.947	4.119).401 1755	2.934 1.065	2.550	2.214	1.939	1./11	1.529	1.338
4.5	13.961	11.341	9,199	7.473	6.242	5.300	4.516	3.878	2.000	2.912	2.613	2.300

concentration						temperatur	re, <i>t</i> /°C					
m	-5	0	5	10	15	20	25	30	35	40	45	50
6.0	20.305	15.899	12.727	10.234	7.997	6.692	5.985	4.930	4.262	3.752	3.366	2.911
8.0	31.501	24.866	19.598	15.599	12.519	10.103	8.447	7.266	6.180	5.454	4.866	4.184
11.0	79.870	60.159	46.474	35.686	26.401	21.962	18.209	15.734	13.743	10.983	10.021	8.455
14.0	180.863	132.010	95.569	71.990	51.472	41.370	33.179	28.115	24.131	19.012	16.993	14.556
15.2	333.404	245.142	180.224	134.336	93.211	75.946	60.253	49.001	41.068	32.397	28.465	22.821
					$x_1 = 0.4,$	$x_2 = 0.6$						
0.0	3.991	3.451	2.980	2.570	2.212	1.901	1.651	1.446	1.296	1.149	1.039	0.932
0.5	4.501	3.955	3.349	2.837	2.429	2.090	1.818	1.609	1.444	1.271	1.126	1.006
1.0	4.921	4.211	3.625	3.113	2.638	2.284	2.010	1.755	1.505	1.325	1.217	1.100
2.0	5.811	5.020	4.285	3.653	3.152	2.692	2.331	2.019	1.795	1.575	1.367	1.251
3.0	6.959	6.001	5.115	4.354	3.713	3.187	2.755	2.336	2.145	1.887	1.622	1.435
4.5	12.770	10.499	8.686	7.138	5.880	5.087	4.409	3.833	3.347	2.931	2.629	2.352
6.0	19.116	15.185	12.106	9.770	7.715	6.536	5.546	4.832	4.199	3.691	3.299	2.902
8.0	30.193	24.008	19.051	15.238	11.601	9.930	8.460	7.339	6.312	5.565	4.936	4.313
11.0	07.538 122.649	52.155	40.710	31.932 62.320	23.587	19.735	16.242	14.135	12.430	16 202	9.193	12 852
14.0	125.048	98.800	/8.949	02.320	45.551	33.694	28.330	24.044	21.109	10.393	14.943	12.835
0.0	2 245	2.029	2.570	2 2(0	$x_1 = 0.5,$	$x_2 = 0.7$	1 5 1 2	1.256	1 215	1.000	0.009	0.002
0.0	5.545 2.741	2.938	2.579	2.200	2 104	1./15	1.515	1.330	1.215	1.090	0.998	0.902
1.0	J. 741 4 104	3.557	2.074	2.313	2.194	2 126	1.000	1.490	1.331	1.101	1.072	1.035
2.0	5 000	4 300	3 700	2.751	2.437	2.120	2 165	1.021	1.409	1.511	1.175	1.035
2.0	6 100	5 381	4 631	3 996	2.045	2.409	2.103	2 302	2.045	1.521	1.509	1.239
4.5	9.056	7 495	6 206	5 238	4 486	3 877	3 363	2.302	2.045	2 362	2 157	1.402
60	12 910	10.622	8 726	7 178	5 920	5 127	4 449	3 873	3 387	2.985	2.137	2 492
8.0	22.497	18.653	15.460	12.816	10.651	9.067	7.704	6.684	5.764	5.118	4.594	4.180
11.0	67.128	52.393	40.820	32.134	23.727	19.960	16.605	14.327	12.652	10.269	9.301	8.108
13.5	139.112	104.463	78.306	59.415	42.780	35.153	28.478	24.163	20.882	16.555	14.885	12.766
					$x_1 = 0.2,$	$x_2 = 0.8$						
0.0	2.805	2,491	2.210	1.959	1.721	1.515	1.353	1.218	1.110	1.004	0.925	0.839
0.5	3.126	2.787	2.485	2.213	1.939	1.709	1.521	1.358	1.223	1.105	1.015	0.925
1.0	3.529	3.120	2.763	2.435	2.125	1.869	1.654	1.489	1.345	1.208	1.103	1.007
2.0	4.411	3.852	3.360	2.925	2.524	2.254	2.003	1.794	1.602	1.420	1.328	1.225
3.0	5.248	4.613	4.054	3.554	3.100	2.703	2.381	2.130	1.925	1.714	1.564	1.420
4.5	7.139	6.237	5.448	4.748	4.119	3.574	3.131	2.789	2.487	2.252	2.072	1.823
6.0	11.375	9.575	8.021	6.713	5.598	4.830	4.237	3.728	3.259	2.955	2.691	2.514
8.0	16.025	13.729	11.165	8.999	7.965	7.070	6.265	5.506	4.765	4.077	3.569	3.101
11.0	63.702	49.786	39.279	30.949	23.481	19.622	16.284	14.187	12.501	10.199	9.135	7.575
13.0	123.911	91.252	69.106	53.332	38.717	31.596	26.141	22.233	19.276	15.356	13.709	11.483
					$x_1 = 0.1,$	$x_2 = 0.9$						
0.0	2.307	2.059	1.837	1.639	1.510	1.355	1.249	1.156	1.067	0.920	0.860	0.760
0.5	2.871	2.595	2.386	2.149	1.887	1.710	1.537	1.393	1.291	1.158	1.074	0.991
1.0	3.245	2.918	2.615	2.340	2.096	1.892	1.690	1.546	1.408	1.285	1.189	1.095
2.0	3.911	3.512	3.150	2.822	2.503	2.233	2.005	1.817	1.673	1.530	1.413	1.295
3.0	4.839	4.313	3.842	3.423	3.047	2.684	2.399	2.176	1.980	1.796	1.662	1.521
4.5	6.701	5.883	5.166	4.529	3.950	3.496	3.103	2.820	2.529	2.287	2.133	1.909
6.0	10.288	8.711	7.372	6.334	5.456	4.//1	4.290	3.792	3.335	3.034	2.790	2.608
8.0	16.193	13.643	11.483 52.466	9.681	8.225	/.103	0.253	5.524 18.652	4.879	4.342	3.992	3.08/
11.0	80.485	08.040	55.400	41.329	r = 0.0	20.362	21.420	18.052	10.420	15.101	12.055	10.425
0.0	1 075	1 775	1 620	1 468	$n_1 = 0.0,$	$n_2 = 1.0$ 1 207	1 105	1.010	0 920	0.840	0 772	0.713
0.5	2 208	2 043	1 863	1 695	1 495	1 357	1 218	1 089	1.006	0.078	0.866	0.713
1.0	2.546	2,313	2,099	1 908	1.715	1.524	1.412	1.306	1.129	1.046	0.968	0.884
2.0	3,283	2.943	2.638	2.366	2,100	1.869	1.677	1.500	1.369	1.267	1.164	1.070
3.0	4,167	3.722	3.323	2.959	2,603	2.307	2.057	1.846	1.671	1.524	1.414	1.285
4.5	5.819	5.158	4.570	4.045	3.546	3.124	2.767	2.469	2.223	2.010	1.842	1.677
6.0	9.082	7.821	6.735	5.802	4.988	4.395	3.869	3.436	3.077	2.762	2.538	2.335
8.0	14.963	12.709	10.782	9.203	7.807	6.784	5.908	5.171	4.578	4.089	3.735	3.437
10.0	25.437	21.163	17.617	14.676	12.335	10.561	9.071	7.924	6.884	6.076	5.603	5.009

different options of cell constants were available, for uniformity sake, the cell of 1 cm^{-1} was employed throughout. The instrument was first calibrated at 25 °C with standard aqueous KCl solutions,¹ and the calibration was also monitored from time to time during the experimentation. Previously reported⁴⁶ values for concentrated aqueous solutions

Table 5 Continued

of Na₂SO₄ at different temperatures could well be reproduced within \pm 0.04 %. For the conductivity measurement, equal portions of the sample, taken in two identical narrow-necked cells, were first thermostatted in a bath of required temperature for about 20 min. One of them served for the conductivity measurement, while the ASTM-calibrated ther-

Figure 4. (a-d) Viscosity, η , fitted to LiCl aquamolality, m, in the isotherm $\eta(m) = \eta^{\circ} + a_1 \cdot m + a_2 \cdot m^2$ from -5 °C to +50 °C at 5 °C intervals. The binary ethanol mixtures of water mole fractions, x_1 ; η° refers to viscosity of the solvent mixtures (refer to Table 1) (a) $x_1 = 1.0$, (b) $x_1 = 0.7$, (c) $x_1 = 0.4$, and (d) $x_1 = 0.0$.

Table 6. Coefficients (in Appropriate Units) of the Polynomial $\eta/\eta^{\circ} = 1 + B \cdot m + C \cdot m^2 + D \cdot m^3$ at Different Temperatures in Aqueous Mixtures of Ethanol of Various Water Mole Fractions x_1 (Other Details in the Text)

							temperat	ture, t/°C					
x_1	parameters	-5	0	5	10	15	20	25	30	35	40	45	50
0.0	В	0.347	0.345	0.325	0.317	0.291	0.270	0.252	0.253	0.245	0.234	0.249	0.239
	С	-0.029	-0.026	-0.021	-0.017	-0.014	-0.007	-0.004	-0.006	-0.002	-0.002	-0.004	-0.002
	D	0.011	0.010	0.009	0.008	0.007	0.006	0.005	0.005	0.004	0.004	0.004	0.003
0.1	В	2.026	1.799	1.605	1.411	1.123	1.063	0.898	0.849	0.826	0.797	0.777	0.760
	С	-0.771	-0.667	-0.577	-0.487	-0.369	-0.343	-0.278	-0.261	-0.254	-0.222	-0.216	-0.198
	D	0.080	0.070	0.060	0.051	0.039	0.036	0.030	0.028	0.027	0.024	0.023	0.021
0.2	В	1.263	0.927	0.753	0.668	0.498	0.429	0.399	0.352	0.321	0.292	0.304	0.333
	С	-0.433	-0.304	-0.236	-0.200	-0.131	-0.104	-0.090	-0.074	-0.066	-0.051	-0.055	-0.058
	D	0.045	0.034	0.028	0.023	0.017	0.015	0.013	0.012	0.011	0.009	0.009	0.008
0.3	В	0.802	0.626	0.472	0.363	0.300	0.267	0.229	0.204	0.177	0.147	0.145	0.098
	С	-0.251	-0.185	-0.129	-0.088	-0.057	-0.044	-0.030	-0.022	-0.015	-0.001	-0.001	-0.016
	D	0.031	0.024	0.019	0.015	0.011	0.010	0.008	0.007	0.007	0.005	0.005	0.008
0.4	В	0.223	0.284	0.331	0.337	0.267	0.211	0.225	0.249	0.202	0.161	0.161	0.181
	С	-0.013	-0.019	-0.038	-0.042	-0.019	-0.009	-0.001	-0.007	-0.004	-0.022	-0.021	-0.014
	D	0.027	0.010	0.010	0.010	0.007	0.006	0.005	0.005	0.003	0.002	0.003	0.003
0.5	В	2.322	2.020	1.738	1.508	1.211	1.178	1.087	0.938	0.843	0.770	0.706	0.558
	С	-0.641	-0.549	-0.461	-0.394	-0.303	-0.292	-0.260	-0.219	-0.193	-0.169	-0.151	-0.112
	D	0.050	0.043	0.036	0.031	0.024	0.023	0.021	0.018	0.017	0.014	0.013	0.011
0.6	В	0.486	0.416	0.400	0.342	0.312	0.282	0.283	0.262	0.215	0.207	0.193	0.167
	С	-0.096	-0.076	-0.072	-0.057	-0.047	-0.038	-0.033	-0.027	-0.017	-0.012	-0.010	-0.002
	D	0.011	0.009	0.008	0.007	0.006	0.005	0.005	0.004	0.004	0.003	0.003	0.003
0.7	В	0.481	0.412	0.398	0.340	0.312	0.282	0.283	0.262	0.216	0.210	0.201	0.180
	С	-0.096	-0.076	-0.072	-0.057	-0.047	-0.038	-0.033	-0.027	-0.017	-0.012	-0.011	-0.003
	D	0.010	0.009	0.008	0.007	0.006	0.005	0.005	0.004	0.004	0.003	0.003	0.003
0.8	В	0.362	0.347	0.310	0.274	0.234	0.197	0.193	0.184	0.186	0.200	0.186	0.200
	С	-0.055	-0.052	-0.044	-0.035	-0.026	-0.014	-0.015	-0.010	-0.011	-0.013	-0.011	-0.013
	D	0.006	0.006	0.005	0.004	0.003	0.003	0.003	0.002	0.003	0.002	0.003	0.003
0.9	В	0.197	0.185	0.179	0.153	0.181	0.171	0.215	0.192	0.169	0.157	0.153	0.152
	С	-0.017	-0.016	-0.014	-0.009	-0.010	-0.007	-0.015	-0.011	-0.008	-0.009	-0.009	-0.011
	D	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
1.0	В	0.092	0.154	0.209	0.199	0.194	0.228	0.245	0.280	0.290	0.287	0.099	0.154
	С	0.011	-0.006	-0.018	-0.016	-0.014	-0.022	-0.027	-0.035	-0.036	-0.034	-0.011	-0.006
	D	0.001	0.002	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.003	0.004	0.002

Figure 5. (a–d) $\ln(\eta)$ vs 1/*T* plots to determine flow activation energies (*E*_a) of the LiCl solutions in aqueous ethanol of different water mole fractions, *x*₁: (a) *x*₁ = 1.0, (b) *x*₁ = 0.7, (c) *x*₁ = 0.4, and (d) *x*₁ = 0.1.

Table 7.	Conductivity (E_c) and Flow (E_a) Activation Energies $(kJ \cdot mol$	⁻¹) for LiCl Solutions	of Different	Concentrations (m) in Aqu	ieous
Mixtures	of Ethanol Having Water Mole Fractions, x_1^a					

		aquamolality (<i>m</i>)										
<i>x</i> ₁	E's	0.5	1.0	2.0	3.0	4.5	6.0	8.0	11.0	14.0	18.0	
1.0	$E_{\rm c}$	15.31	14.32	14.83	15.46	18.01	16.84	15.93	15.92	17.15	20.04 (17.8)	
	$E_{\rm a}$	17.91	18.12	18.30	18.72	18.98	19.24	19.49	19.74	20.58	21.35	
0.9	$E_{\rm c}$	19.63	20.67	19.80	19.58	19.07	18.87	19.07	19.83	21.50	24.16 (18.0)	
	$E_{\rm a}$	24.32	24.40	24.47	24.71	24.97	25.21	25.62	26.50	27.74	28.09	
0.8	$E_{\rm c}$	23.34	22.96	21.23	20.66	20.09	20.10	21.51	22.40	23.67	25.42 (17.5)	
	$E_{\rm a}$	24.50	24.73	25.01	25.36	25.58	25.81	26.82	27.91	29.47	31.50	
0.7	$E_{\rm c}$	21.74	20.91	20.63	20.51	20.41	20.52	22.05	21.68	25.18	26.85 (16.5)	
	$E_{\rm a}$	23.91	24.12	24.40	24.57	24.82	25.51	26.72	27.91	30.74	32.92	
0.6	$E_{\rm c}$	20.38	19.76	19.58	19.48	19.51	20.09	20.59	22.25	25.39	27.51 (16.0)	
	$E_{\rm a}$	22.33	22.61	22.88	23.73	24.02	25.89	26.61	28.72	31.63	34.51	
0.5	$E_{\rm c}$	20.02	18.71	18.25	18.70	18.61	18.48	20.54	22.66	25.56	26.63 (15.2)	
	$E_{\rm a}$	20.92	21.08	21.43	23.14	23.51	25.23	26.50	29.12	32.90	34.93	
0.4	$E_{\rm c}$	17.57	17.43	17.52	17.57	18.17	18.57	19.75	22.23	25.75 (14.0)		
	$E_{\rm a}$	19.90	19.96	20.50	20.83	22.20	24.63	25.41	28.07	31.21		
0.3	$E_{\rm c}$	16.96	16.25	16.39	16.72	17.38	18.32	19.61	22.50	26.61 (13.5)		
	$E_{\rm a}$	17.97	18.31	18.50	18.90	20.52	21.81	22.50	27.82	31.30		
0.2	$E_{\rm c}$	15.69	15.18	15.68	16.14	16.83	17.60	19.05	21.94	25.46 (13.0)		
	$E_{\rm a}$	16.30	16.67	17.14	17.41	18.02	20.01	21.00	27.48	30.71		
0.1	$E_{\rm c}$	15.93	14.10	14.82	15.34	16.50	17.43	18.95	23.86 (11.0)			
	$E_{\rm a}$	14.42	14.81	15.66	16.31	17.05	18.91	20.20	27.32			
0.0	$E_{\rm c}$	14.86	13.26	14.45	15.21	16.66	17.54	18.78	20.23 (10.0)			
	$E_{\rm a}$	13.83	14.02	14.91	15.74	16.62	18.13	19.60	21.62			

^{*a*} Values in parentheses correspond to the highest value of m.

mometer was dipped in the other in such a way that positions of the electrode and thermometer were maintained each time. Subsequently, the mouths of the cells were closed with paraffin film to minimize any variation of the sample composition. Conductivity values could be reproduced within ± 1 % for some randomly selected samples in the subsequent sessions.

Results and Discussion

Table 1 presents density data for the solvent systems and their LiCl solutions, while the density isotherms at some selected compositions have been plotted against LiCl aquamolality (*m*) in Figure 1a-d. Our measured densities (at 20 °C) for *the mixtures* (ρ°) and aqueous LiCl solutions fall

Figure 6. Variation trend of the flow activation energy (E_a) with water mole fraction, x_1 , in aqueous ethanol at different LiClm (from bottom to top): 0.0, 0.5, 1.0, 2.0, 3.0, 4.5, 6.0, 8.0, and 11.0 m.

Figure 7. (a–d) Electrical conductivity isotherms plotted against LiCl aquamolality (*m*) in aqueous ethanol of different water mole fractions, x_1 : (a) $x_1 = 0.9$, (b) $x_1 = 0.7$, (c) $x_1 = 0.5$, and (d) $x_1 = 0.3$.

within \pm 0.05 % of the corresponding literature values.^{1,2,40,47,48} As expected, the density appreciably changed with both solvent composition and LiCl concentration. All the solutions exhibited almost a linear density increase with *m* making the ρ -isotherms fit a second order eq 1.

$$\rho(t,\boldsymbol{m}) = d_0(t) + d_1(t) \cdot \boldsymbol{m} + d_2(t) \cdot \boldsymbol{m}^2 \tag{1}$$

where d_0 is the fitted density of the neat solvent or mixture, whose values have deviated only up to 0.1 % from the respective measured values, ρ_0 (ref Table 1) and d_1 and d_2 are the corresponding density coefficients whose values are also listed in Table 2. A closer inspection of the plots suggests that change of density with LiCl concentration is greater when water is in excess, but on the contrary, the variation with temperature (though minor) is more pronounced when ethanol is in excess. Since the concentration gradient $\mathbf{g}(x_1)$ of eq 1 does not appreciably change with temperature, it can be regarded as a specific parameter for a given solute-solvent system and can conveniently be used as a density index. Due to a negligible contribution of the term involving m^2 for *the system*, $\mathbf{g}(x_1)$ can simply be compared with d_1 of eq 1. The **g**-values (included in Table 1 and also plotted against the mixture compositions in Figure 2) can be employed for fairly accurate determination of solution density at any LiCl concentration and solvent composition within the given temperature range. Consequently, the density of *the system*

Table 8. Electrical Conductivity ($k/mS \cdot cm^{-1}$) at Different Temperatures and LiCl Aquamolalities (*m*) in Binary Mixtures of Water (1) and Ethanol (2) Having Mole Fractions x_1 and x_2

concentration		temperature, t/°C										
aquamolality/m	-5	0	5	10	15	20	25	30	35	40	45	50
					$r = 1.0^{4}$	$r_{-} = 0.0$						
0.5	_	_	26 100	29 900	33500	$, x_2 = 0.0$ 37.400	41,500	45 800	49 900	54 300	58 500	62 800
1.0	_	_	46.400	52.000	58.700	65.300	72.900	80.000	87.000	94.500	102.200	110.100
2.0	_	-	76.400	86.100	96.200	107.400	120.400	132.000	144.200	156.400	168.300	180.800
3.0	-	_	95.900	109.600	122.600	137.100	152.400	166.800	181.900	197.400	b	b
4.5	-	_	114.800	130.000	144.600	160.800	176.800	194.200	Ь	Ь	ь	Ь
6.0	-	_	120.400	136.200	152.300	168.900	186.600	b	b	b	b	b
8.0	—	_	115.300	130.700	146.100	162.700	179.500	197.300	D	D	b	b
11.0	-	—	93.700	106.900	120.800	135.600	151.000	167.000	182.600	199.700	175 400	101 400
14.0	_	_	69.900 47.100	80.100 55.200	90.900 64.500	103.600	85.000	131.100	145.400	160.400	1/5.400	191.400
17.0			47.100	55.200	04.500	/4.400	85.000	90.100	108.000	122.000	150.400	130.000
					$x_1 = 0.9$	$x_2 = 0.1$						
0.5	7.340	9.020	10.980	13.140	15.340	17.840	19.200	21.800	24.550	27.300	30.400	33.100
2.0	20.800	25 300	30.400	36 100	41 800	28.050 48.200	55 200	61,900	42.100 69.800	77.600	85 300	93 500
3.0	27.600	33.500	40.300	47.500	55.100	63.000	72.400	81.300	90.700	100.600	111.600	122.200
4.5	33.300	40.700	48.600	57.300	65.900	74.800	85.100	95.600	107.000	118.700	130.100	143.300
6.0	36.100	43.200	51.200	60.000	69.100	78.900	89.300	100.500	112.600	124.900	137.600	150.300
8.0	34.500	41.100	49.300	57.500	66.500	75.900	85.800	96.800	108.600	120.800	133.000	146.100
11.0	28.000	33.500	40.200	47.300	54.400	63.300	72.500	81.700	92.000	102.200	113.000	125.500
14.0	20.100	24.000	29.100	35.100	41.000	48.100	55.500 27.800	63.400	72.300	81.500 58.200	90.600	101.000
16.0	11.020	14.460	18.050	22.100	20.700	52.000	57.800	44.200	51.100	38.300	00.100	74.400
					$x_1 = 0.8$	$x_2 = 0.2$						
0.5	3.300	4.220	5.240	6.380	7.650	9.040	10.53	12.11	13.79	15.53	17.35	19.23
1.0	6.210 10.54	8.000	9.830	21.60	14.21	16.70	19.38	22.40	25.40	28.70	32.00 51.80	35.30 57.00
3.0	13.76	19.25	23.90	21.00	32.70	37 50	42.40	47.80	53 50	59 50	64 70	70.90
4.5	16.85	23.70	29.80	32.70	39.40	44.40	50.60	56.70	63.40	70.00	76.90	83.50
6.0	17.93	26.80	32.00	36.60	42.80	48.90	55.70	62.20	69.50	76.80	84.40	91.80
8.0	15.30	20.00	24.30	28.90	34.10	40.70	45.60	52.00	58.60	65.50	73.20	80.20
11.0	11.62	14.64	17.86	21.20	25.30	29.70	34.60	39.70	45.20	51.10	57.10	63.60
14.0	8.940	11.38	14.05	17.05	20.20	24.00	28.10	32.60	37.50	42.70	48.30	54.30
17.5	6.700	8.680	10.90	13.42	10.31	19.58	23.00	27.20	31.30	36.20	41.10	46.50
					$x_1 = 0.7$	$x_2 = 0.3$						
0.5	2.790	3.480	4.220	5.070	5.970	6.950	8.000	9.090	10.32	11.61	12.91	14.30
1.0	4.900	6.820	8.240	9.670	11.13	12.80	14.59	16.45	18.34	20.30	23.60	25.60
2.0	8.040 10.97	11.28	15.39	19.32	18.18	20.20	24.60	27.50	38.00	33.00 42.20	30.90 46 70	40.30
4.5	12.61	15.40	18.60	22.00	25.80	29.60	34.00	38.90	43.20	47.90	52.90	58.60
6.0	13.12	16.39	20.30	23.90	27.90	32.30	36.70	41.60	46.50	51.90	57.40	63.20
8.0	12.11	14.96	18.08	21.60	25.50	29.80	34.50	39.60	45.10	51.00	57.30	64.00
11.0	9.100	11.18	13.72	16.42	19.57	22.40	25.20	29.10	33.50	37.90	42.40	47.40
14.0	6.170	7.840	9.860	12.12	14.82	17.76	21.00	24.50	28.20	32.30	36.70	41.40
10.5	4.180	6.500	8.140	10.13	12.47	15.07	18.08	20.10	23.60	27.60	31.50	36.00
					$x_1 = 0.6$	$x_2 = 0.4$						
0.5	2.390	2.880	3.440	4.060	4.750	5.470	6.250	7.100	7.960	8.890	9.850	10.83
1.0	4.150	5.070	0.050	/.090	8.240	9.490	10.82	12.22	13.09	15.25	10.87	17.62
2.0	8 460	10.19	12.23	14.33	16.60	19.07	21.60	24 40	22.10	30.10	33.00	36.30
4.5	9.840	11.84	14.20	16.60	19.30	22.10	25.10	28.20	31.40	35.10	38.70	42.40
6.0	9.850	12.02	14.30	16.85	19.72	22.70	25.80	29.20	32.80	36.60	40.40	44.60
8.0	8.670	10.55	12.77	15.08	17.69	20.00	23.00	26.20	29.60	33.30	37.20	41.00
11.0	6.770	8.100	9.890	11.91	14.22	16.65	19.37	21.80	25.00	28.40	32.00	35.80
14.0	4.100	5.160	6.570 5.020	8.100	9.780	0.400	13.95	16.43	19.08	21.30	24.50	27.90
10.0	5.050	5.870	5.050	0.290	1.730	9.400	11.54	15.44	13.01	16.40	21.10	24.10
					$x_1 = 0.5$	$x_2 = 0.5$						
0.5	2.120	2.510	2.970	3.450	3.990	4.560	5.160	5.800	6.500	7.220	8.010	8.800
1.0	5.030	4.300	5.100 8.060	5.940	0.780 10.76	12.16	8.720	9.790	10.92	12.12	13.34	14.58
3.0	7 060	8 410	9 900	11 46	13.18	15.00	16.94	19.00	21.20	23.50	26.10	22.70
4.5	7.940	9.250	10.91	12.70	14.67	16.64	18.84	20.98	23.50	26.00	28.60	31.40
6.0	10.39	12.37	14.51	16.77	19.27	21.90	24.90	27.90	30.90	34.40	37.50	41.20
8.0	6.830	8.210	9.830	11.54	13.45	15.61	17.84	20.30	22.90	25.70	28.60	31.70
11.0	4.650	5.690	6.930	8.370	9.920	11.64	13.51	15.52	17.80	20.10	22.70	25.50
14.0	3.030	3.790	4.730	5.860	7.110	8.520	10.11	11.85	13.73	15.87	18.15	20.70
15.2	2.570	3.250	4.170	5.090	6.230	1.550	9.030	10.71	12.59	14.47	10.67	19.13
					$x_1 = 0.4$	$x_2 = 0.6$						
0.5	1.980	2.290	2.650	3.060	3.470	3.910	4.390	4.910	5.440	5.990	6.570	7.180
1.0	3.340	3.850	4.480	5.140	5.830	6.590	7.380	8.220	9.100	10.02	11.00	11.98
2.0	5.100	0.020	0.950	7.970 9.600	9.090	10.25	11.52	12.84	14.24 17.17	13.08	20.70	18.74
4.5	6.770	7.940	9.300	10.70	12.27	13.83	15.60	17.48	19.47	21.60	23.70	26.10
6.0	6.550	7.700	8.990	10.46	12.03	13.69	15.49	17.35	19.38	21.40	23.60	26.00
8.0	5.530	6.560	7.750	9.080	10.54	12.11	13.79	15.61	17.58	19.64	21.70	23.90

2084	Journal of	^r Chemical	Å	Engineering	Data,	Vol.	53,	No.	9,	200)8
------	------------	-----------------------	---	-------------	-------	------	-----	-----	----	-----	----

Table 8 Continued

concentration	temperature, t/°C											
aquamolality/ <i>m</i>	-5	0	5	10	15	20	25	30	35	40	45	50
11.0	3.680	4.450	5.400	6.390	7.570	8.870	10.32	11.90	13.57	15.34	17.25	19.32
14.0	2.200	2.750	3.420	4.230	5.140	6.160	7.320	8.640	10.00	11.66	13.36	15.21
					$x_1 =$	$0.3, x_2 = 0.$	7					
0.5	1.691	1.933	2.380	2.690	3.030	3.400	3,780	4.170	4.590	5.030	5.500	5,950
1.0	2.990	3.420	3.910	4.450	5.010	5.590	6.230	6.900	7.600	8.290	9.000	9.780
2.0	4.520	5.200	5.920	6.740	7.600	8.510	9.470	10.52	11.56	12.68	13.80	15.01
3.0	5.210	5.990	6.870	7.830	8.870	9.940	11.20	12.41	13.61	14.93	16.33	17.75
4.5	5.290	6.020	6.920	7.960	9.030	10.19	11.41	12.74	14.16	15.68	17.29	18.90
6.0	4.860	5.700	6.640	7.680	8.790	9.990	11.27	12.64	14.13	15.62	17.22	18.88
8.0	4.070	4.760	5.660	6.560	7.580	8.710	9.940	11.27	12.63	14.13	15.70	17.40
11.0	2.560	3.090	3.710	4.400	5.240	6.150	7.160	8.260	9.460	10.78	12.17	13.63
13.5	1.460	1.830	2.440	2.990	3.640	4.360	5.210	6.140	7.200	8.300	9.500	10.87
					$x_1 =$	$0.2, x_2 = 0.$.8					
0.5	1.480	1.670	1.880	2.210	2.460	2.730	3.010	3.310	3.640	3.950	4.250	4.590
1.0	2.470	2.810	3 170	3 550	3 970	4 4 1 0	4 860	5 360	5 850	6 370	6 910	7 450
2.0	3.580	4.110	4.640	5.250	5.860	6.540	7.180	7.990	8.780	9.590	10.43	11.27
3.0	4.150	4.750	5.430	6.150	6.890	7.710	8.590	9.500	10.46	11.45	12.48	13.56
4.5	4.350	5.040	5.760	6.550	7.410	8.340	9.310	10.35	11.47	12.56	13.80	15.06
6.0	4.060	4.700	5.400	6.210	7.070	7.990	8.990	10.03	11.17	12.35	13.54	14.84
8.0	3.260	3.820	4.460	5.180	5.960	6.770	7.740	8.730	9.770	10.90	12.11	13.37
11.0	2.070	2.450	2.940	3.500	4.120	4.790	5.570	6.430	7.330	8.310	9.370	10.51
13.0	1.315	1.619	1.989	2.530	3.020	3.620	4.280	5.020	5.830	6.750	7.710	8.760
					$x_1 =$	$0.1, x_2 = 0.$	9					
0.5	1.305	1.461	1.644	1.821	2.300	2.510	2.740	2.980	3.230	3.500	3.760	4.040
1.0	2.410	2.710	3.030	3.390	3.730	4.110	4.510	4.930	5.360	5.790	6.240	6.690
2.0	3.310	3.750	4.210	4.710	5.240	5.820	6.430	7.050	7.670	8.350	9.010	9.710
3.0	3.780	4.260	4.820	5.430	6.040	6.720	7.440	8.200	9.000	9.780	10.66	11.56
4.5	3.820	4.360	4.960	5.610	6.340	7.200	7.970	8.830	9.770	10.69	11.70	12.75
6.0	3.510	4.030	4.650	5.341	6.030	6.830	7.660	8.530	9.510	10.49	11.58	12.68
8.0	2.740	3.210	3.760	4.310	4.950	5.660	6.440	7.280	8.120	9.090	10.07	11.17
11.0	1.527	1.890	2.560	3.020	3.540	4.120	4.760	5.540	6.310	7.190	8.070	9.110
					$x_1 =$	$0.0, x_2 = 1.$	0					
0.5	1.172	1.303	1.438	1.580	1.720	1.880	2.310	2.500	2.700	2.890	3.090	3.270
1.0	1.970	2.210	2.450	2.700	2.950	3.250	3.540	3.840	4.200	4.470	4.800	5.120
2.0	2.690	3.000	3.360	3.700	4.150	4.590	5.060	5.540	6.050	6.520	7.080	7.620
3.0	3.000	3.350	3.830	4.410	4.770	5.330	5.890	6.490	7.110	7.730	8.430	9.110
4.5	3.050	3.430	3.940	4.450	5.050	5.650	6.290	6.970	7.720	8.520	9.310	10.20
6.0	2.760	3.150	3.620	4.170	4.720	5.290	6.000	6.700	7.460	8.220	9.100	9.980
8.0	2.220	2.580	3.000	3.480	3.960	4.500	5.140	5.750	6.440	7.120	7.920	8.750
10.0	1.620	1.980	2.380	2.760	3.220	3.670	4.270	4.870	5.510	6.240	6.970	7.830

^{*a*} Conductivities of the aqueous solutions at (-5 and 0) °C were not readable on the instrument due to fluctuations. ^{*b*} Values exceeded instrument's maximum range of 200 mS · cm⁻¹.

can well be summarized as the following general expression

$$\rho(x_1, \boldsymbol{m}, t) = \rho_0(x_1, t) + \mathbf{g}(x_1) \cdot \boldsymbol{m}$$
(2)

Rapid increase of the **g**-value on increasing x_1 in water-rich solutions may be attributed to both preferential solvation by water molecules and its making compacter solvates.⁴⁸

A rather useful thermodynamic property related to density of any solvent mixture is its excess molar volume, $V^{\mathbb{E}}(T)$, which for binary mixtures may be expressed as

$$V^{\rm E} = [(x_1M_1 + x_2M_2)/\rho] - [(x_1M_1/\rho_1) + (x_2M_2/\rho_2)] \quad (3)$$

where $x_{1,2}$, $M_{1,2}$, and $\rho_{1,2}$ are the mole fractions, molar masses, and densities of the two components (here water and ethanol, respectively), and ρ is the experimentally measured density of *the mixture*. Excess molar volume, V^{E} , of *the mixture* has been found to depend not only on its composition but also on temperature. V^{E} is an important quantity because it is a sensitive function of intermolecular interactions; therefore, its values for a given system should be measured over the entire composition and an extended temperature range. V^{E} for *the mixture* at different temperatures and water mole fractions have been listed in Table 3, while V^{E} has been plotted against mixture composition at a series of temperatures in Figure 3. The V^{E} isotherms remain in the negative domain over the entire composition range and exhibit minima as well (the 25 °C plot in good agreement with the reported results^{47–49}). Minima of all the V^{E} isotherms at the same water mole fraction of about 0.6 (Figure 3) suggest that temperature variation does not bring about any significant structural rearrangement in the solvent mixtures. The V^{E} values collected in Table 3 can be reproduced within 5 % at any desired water mole fraction (x_1) and temperature (T/K) by using the following expression

$$V^{\text{E}}(T) = [0.29 \pm 0.02 - (93 \pm 5)/T] + [1.56 \pm 0.09 - (1370 \pm 80)/T]x_1 + [-0.47 \pm 0.03 + (270 \pm 15)/T]x_1^2 + [-1.10 \pm 0.07 + (1110 \pm 70)/T]x_1^3 \quad (4)$$

Variation of volume with temperature is normally related to the thermal expansion coefficient,⁴⁶ $\alpha(t) \equiv -d(\ln \rho)/dt$. How-

Table 9. Coefficients (in Appropriate Units) of the Equation $\kappa(T) = k_0 + k_1 \cdot m + k_2 \cdot m^2 + k_3 \cdot m^3$ at Different Temperatures in Binary Mixtures of Water (1) and Ethanol (2) Having Mole Fractions x_1 and x_2 (k_0 Has Been Adjusted to Zero)

						temper	rature, t/°C						
k's	-5	0	5	10	15	20	25	30	35	40	45	50	
						$x_1 = 1.0, x_2$	$t_2 = 0.0$						
k_1	34.25	39.14	44.62	50.54	56.38	62.62	69.23	76.09	85.37	98.23	112.13	128.73	
k_2	-3.64	-4.18	-4.78	-5.41	-6.03	-6.68	-7.38	-8.09	-9.14	-10.62	-12.22	-14.10	
k_3^2	0.100	0.120	0.140	0.150	0.170	0.190	0.210	0.230	0.260	0.310	0.360	0.410	
						$x_1 = 0.9, x_2$	$t_2 = 0.1$						
k_1	12.54	15.26	18.24	21.43	24.79	28.19	32.13	36.11	40.37	44.8	49.36	53.96	
k_2	-1.29	-1.59	-1.90	-2.24	-2.60	-2.94	-3.36	-3.77	-4.21	-4.67	-5.15	-5.60	
k_3	0.035	0.044	0.053	0.062	0.073	0.082	0.095	0.110	0.120	0.132	0.146	0.159	
	$x_1 = 0.8, x_2 = 0.2$												
k_1	6.65	9.62	11.86	13.6	16.11	18.29	20.75	23.24	25.97	28.73	31.43	34.22	
k_2	-0.76	-1.14	-1.42	-1.62	-1.92	-2.15	-2.44	-2.72	-3.03	-3.34	-3.63	-3.94	
k_3	0.020	0.040	0.050	0.050	0.060	0.070	0.080	0.090	0.100	0.110	0.110	0.120	
	$x_1 = 0.7, x_2 = 0.3$												
k_1	5.06	6.54	7.88	9.27	10.74	12.31	14.29	16.09	17.90	19.83	21.94	24.09	
k_2	-0.57	-0.77	-0.92	-1.08	-1.24	-1.42	-1.66	-1.84	-2.04	-2.24	-2.47	-2.70	
k_3	0.017	0.024	0.029	0.034	0.039	0.044	0.052	0.057	0.063	0.070	0.077	0.083	
						$x_1 = 0.6, x_1$	$t_2 = 0.4$						
k_1	4.25	5.16	6.18	7.21	8.33	9.58	10.83	12.26	13.58	15.03	16.51	17.98	
k_2	-0.53	-0.65	-0.78	-0.91	-1.04	-1.20	-1.35	-1.53	-1.68	-1.84	-2.01	-2.18	
k_3	0.018	0.022	0.027	0.031	0.035	0.041	0.046	0.053	0.058	0.063	0.069	0.074	
						$x_1 = 0.5, x_1$	$t_2 = 0.5$						
k_1	3.79	4.46	5.23	6.02	6.9	7.8	8.8	9.81	10.9	12.04	13.06	14.34	
k_2	-0.49	-0.57	-0.66	-0.75	-0.86	-0.96	-1.08	-1.20	-1.33	-1.46	-1.56	-1.71	
k_3	0.018	0.020	0.023	0.025	0.029	0.032	0.035	0.040	0.044	0.048	0.051	0.056	
						$x_1 = 0.4, x_1$	$v_2 = 0.6$						
k_1	3.25	3.78	4.37	5.02	5.70	6.40	7.17	7.98	8.83	9.72	10.63	11.60	
k_2	-0.45	-0.52	-0.59	-0.67	-0.76	-0.85	-0.95	-1.05	-1.15	-1.27	-1.38	-1.50	
k_3	0.016	0.019	0.022	0.025	0.028	0.031	0.034	0.038	0.041	0.045	0.049	0.054	
		2.54	4.05	1.60	- 10	$x_1 = 0.3, x_2$	$t_2 = 0.7$	= 10	= 01	0.54	0.00	10.07	
k_1	3.11	3.56	4.05	4.60	5.18	5.78	6.44	7.12	7.81	8.54	9.30	10.07	
K ₂	-0.52	-0.59	-0.66	-0.75	-0.84	-0.93	-1.03	-1.13	-1.23	-1.34	-1.44	-1.55	
к3	0.025	0.027	0.050	0.034	0.058	0.041	0.040	0.030	0.034	0.039	0.004	0.008	
1	2.51	2.97	2.24	2.00	4.07	$x_1 = 0.2, x_1 = 0.2, x_2 = 0.2, x_1 = 0.2, x_2 = 0.2, x_2 = 0.2, x_1 = 0.2, x_2 = 0.2, x_2 = 0.2, x_1 = 0.2, x_2 = 0.2, x_2 = 0.2, x_1 = 0.2, x_2 = 0.2, x_2 = 0.2, x_1 = 0.2, x_2 = 0.2, x_2 = 0.2, x_1 = 0.2, x_2 = 0.2$	$t_2 = 0.8$	5 5 1	6.04	(57	7 12	7 70	
k_1	2.51	2.87	3.24	3.66	4.07	4.54	5.00	5.51	6.04	0.57	/.13	7.70	
к ₂	-0.42	-0.47	-0.33	-0.39	-0.03	-0.72	-0.78	-0.80	-0.94	-1.01	-1.09	-1.17	
к3	0.019	0.021	0.024	0.020	0.029	0.052	0.054	0.058	0.041	0.044	0.048	0.031	
1	2.24	2 (2	2.06	2 21	2 70	$x_1 = 0.1, x_1 = 0.1$	$t_2 = 0.9$	4.01	5.26	5 70	()5	(7)	
κ_1	2.34	2.03	2.96	5.51	3.70	4.09	4.49	4.91	5.30	5.79	0.25	0.72	
k_2	-0.40	-0.43	-0.30	-0.30	-0.02	-0.07	-0.75	-0.80	-0.80	-0.92	-0.98	-1.04	
к3	0.018	0.02	0.025	0.023	0.028	0.031	0.055	0.050	0.039	0.041	0.044	0.040	
k	1.07	2 10	2 16	2 72	3 00	$x_1 = 0.0, x_1 = 0.0, x_2 = 0.0, x_1 = 0.0, x_2 = 0.0, x_2 = 0.0, x_3 = 0.0, x_4 = 0.0, x_5 = 0.0$	$t_2 = 1.0$	4.00	1 25	4.60	5.05	5 10	
k_1	-0.36	2.19	2.40	2.75	-0.52	-0.57	-0.62	4.00	4.55	4.09	-0.83	-0.88	
k 2	0.50	0.39	0.44	0.40	0.52	0.57	0.02	0.07	0.75	0.78	0.03	0.00	
r3	0.010	0.02	0.022	0.024	0.025	0.020	0.050	0.032	0.055	0.037	0.039	0.041	

ever, a rather more useful empirical working expression proposed in this regard (at room temperature) is 1,50

$$\rho(t) = \rho(25) \cdot e^{\beta(t-25)} \tag{5}$$

in which $\rho(t)$ and $\rho(25)$ are densities measured at *t* and 25 °C, respectively. Parameter β (closely related to α) can be regarded as the temperature average coefficient of thermal expansion whose values for the entire system have been determined and collected in Table 4. The credibility of the β -values given in Table 4 may be judged from comparison of our determined value of $-2.70 \cdot 10^{-4}$ per degree for water with the corresponding literature¹ value of $-2.63 \cdot 10^{-4}$.

Viscosities at a series of temperatures and LiCl aquamolalities (*m*) are presented in Table 5 for each solvent mixture separately. Also the η values for some selected mixtures have been plotted as isotherms against LiCl concentration in Figure 4a-d. The data fit very well to polynomials involving up to cubic terms in *m*. For the viscosity investigations, rather more useful parameters commonly employed are the relative viscosity (η/η°) and the relative viscosity change $([\eta - \eta^{\circ}]/\eta^{\circ} \equiv \Delta \eta/\eta^{\circ})$ which have been differently correlated with electrolyte molarity (*c*) or molality (*m*) by various workers.^{26,51,52} A cubic polynomial (isotherm) in *m* can readily be transformed into the Jones-Dole⁵²⁻⁵⁴ type relation as below

$$\frac{\eta - \eta^{\circ}}{\eta^{\circ}} \equiv \frac{\Delta \eta}{\eta^{\circ}} \equiv B \cdot m + C \cdot m^2 + D \cdot m^3$$
(6)

where η° and η are, respectively, the viscosities of the solvent (without LiCl) and solution at any given temperature. Various terms on the right-hand side of eq 6 contribute toward $\equiv \eta/\eta^{\circ}$, each becoming relatively more significant at higher LiCl concentrations ($m \ge 4.5$). Coefficients *B*, *C*, and D are listed

Figure 8. (a-d) Temperature variation of coefficients k_i of the isotherm $\kappa(T) = k_1 \cdot m + k_2 \cdot m^2 + k_3 \cdot m^3$ for aqueous ethanol of different water mole fractions, x_1 . (a) $x_1 = 0.9$, (b) $x_1 = 0.7$, (c) $x_1 = 0.4$, and (d) $x_1 = 0.1$.

Figure 9. (a-d) Coefficients k_i of Figure 8 plotted against water mole fraction, x_1 , at different temperatures: (a) 5 °C, (b) 20 °C, (c) 35 °C, and (d) 50 °C.

in Table 6 which apparently do not exhibit any regular trend and correlation for different solvent mixtures; however, for a given mixture, temperature variation of the coefficients is quite consistent. *B* takes into account the solute–solvent interactions (ion–solvent for the electrolyte solutions) making it rather more important over the entire concentration range of the solute, while *C* signifies the solute–solute interactions.^{24,54–57} It has been suggested regarding *D* that it should reflect variation in the solvent (1)-solvent (2) interactions, more importantly as a consequence of selective solvation of solute by one of the solvent components.⁵⁸ For all the mixtures, the solution viscosity throughout increased with LiCl concentration, a typical behavior exhibited by structure-making electrolytes also recognized from the positive *B*-values.⁵³

In the selected temperature range of study, a significant viscosity decrease has been observed on raising the temperature,

particularly for the solutions having higher LiCl concentrations. Viscosity is generally correlated with temperature by the Arrhenius-type relationship

$$\ln \eta = \ln \eta_{\infty} + \frac{E_a}{RT} \tag{7}$$

where η_{∞} , E_a , and R are, respectively, the "infinite temperature" viscosity, flow activation energy, and the gas constant. In accordance with eq 7, our $\ln \eta$ versus 1/T plots for the system are fairly straight (plots for solutions in some selected mixtures are given in Figure 5a-d), while all the determined activation energies have been listed in Table 7. $E_{\rm a}$ for the solvent mixtures are in agreement with the reported values,⁵⁹ but the estimated uncertainty of our E_a values could be ± 5 %. For a given solvent (mixture), $E_{\rm a}$ always increased with LiCl concentration; however, the increase appears to be more prominent for the ethanolrich mixtures. Plots of E_a against water mole fraction (x_1) at various LiCl concentrations are shown in Figure 6 which tend to pass through maxima at $x_1 \approx 0.6$, the composition at which the V^{E} isotherms exhibit their minima. Belda and co-workers^{59,60} have, however, reported the E_a maximum at a slightly higher water mole fraction of ~ 0.7 .

The entire electrical conductivity data have been collected in Table 8, and the data for some selected solvent mixtures are plotted as isotherms against the LiCl aquamolality in Figure 7a-d. Each κ vs **m** plot passes through a maximum, and such results have been previously reported for other systems as well.⁶¹⁻⁶³ The initial sharp rise of conductivity with LiCl concentration is obviously dominated by an increased number of ions. However, on further increasing the concentration, besides higher viscosities, phenomena involving ionic interactions³³ cause a decrease of conductivities after passing through the maxima. As a simplified model, it may be considered that conductivity results from two sets of oppositely acting terms, namely, κ_{up} and κ_{down} . While there is a direct relation between κ_{up} and number of solvates, κ_{down} should include contributions arising due to ion-ion interactions, sharing of solvation spheres by the same solvent molecules, etc. Higher conductivities have been measured at higher temperatures in all cases mainly due to the decrease of the viscosity values. The conductivity data fit very well to the following polynomial in LiCl aquamolality, \boldsymbol{m} (k_0 has to be zero to justify a zero value of κ at $\boldsymbol{m} = 0$)

$$\kappa(T) = k_0 + k_1 \cdot \boldsymbol{m} + k_2 \cdot \boldsymbol{m}^2 + k_3 \cdot \boldsymbol{m}^3 \tag{8}$$

where the coefficients k_i (collected in Table 9) vary with both temperature and solvent composition. Some selected plots to demonstrate typical dependence of k_i on temperature and solvent composition are presented in Figure 8a–d and Figure 9a–d, respectively. The term involving k_3 can generally be ignored due to its negligible contribution (except in water). Consequently eq 8 simplifies as

$$\kappa(T) = k_1 \cdot \boldsymbol{m} + k_2 \cdot \boldsymbol{m}^2 \tag{9}$$

The two terms on the right-hand side may well be regarded as κ_{up} and κ_{down} , respectively. A sharper increase of k_1 beyond a water mole fraction of 0.8 (Figure 9) suggests higher mobility of the aquo-solvates,⁶⁴ which is further supported by shifting of the conductivity maximum from ~4.5*m* in the ethanol-rich solvents ($x_1 < 0.5$) to ~6*m* in the water-rich mixtures ($x_1 > 0.5$).

Conductivity and viscosity, both being transport properties, are also related to each other in different ways.⁶⁵ Accordingly the molar conductivity, Λ_m , may also be considered to follow the Arrhenius relationship (eq 10). The corresponding conduc-

tivity activation energy, E_c , can readily be determined from the temperature dependent measurements.

$$\Lambda_{\rm m}(T) = \Lambda^{\infty} {\rm e}^{-E_{\rm e}/RT} \tag{10}$$

 Λ^{∞} is the molar conductivity at the so-called "infinite temperature", and the other symbols have the usual meanings. E_c determined from the slopes of $\ln \Lambda_m$ vs 1/T plots are also given in Table 7. The E_c values come out smaller than the corresponding viscosity E_a values. A possible explanation is that the ion transport under the influence of the applied electrical field involves movement of the individual solvates in the solution, whereas in the case of viscous flow under the influence of mechanical force, the whole layer of liquid has to move experiencing a higher barrier. Like E_a , also the E_c values tend to pass through a maximum for *the system* but at a water mole fraction of ~0.8.

Literature Cited

- Lide, D. R., Ed. Handbook of Chemistry and Physics, 86th ed.; CRC Press: New York, 2005–2006.
- (2) Vercher, E.; Solsona, S.; Isabel Vázquez, M.; Martnez-Andreu, A. Apparent molar volumes of lithium chloride in 1-Propanol + Water in the temperature range from 288.15 to 318.15 K. *Fluid Phase Equilib.* 2003, 209, 95–111.
- (3) Romero, C. M.; Páez, M. Thermodynamic properties of aqueous alcohols and polyol solutions. J. Therm. Anal. Calorim. 2002, 70, 263– 267.
- (4) Wensink, E. J. W.; Hoffmann, A. C.; van Maaren, P. J.; van der Spoel, D. Dynamic properties of water alcohol mixtures studied by computer simulation. J. Chem. Phys. 2003, 119, 7308–7317, and also some other relevant references cited therein.
- (5) Franks, F.; Ives, D. J. G. The structural properties of alcohol-water mixtures. Q. Rev. 1966, 20, 1–45.
- (6) Murthy, S. S. N. Detailed study of ice clathrate relaxation: Evidence for the existence of clathrate structures in some water-alcohol mixtures. *J. Phys. Chem. A* **1999**, *103*, 7927–7937.
- (7) Yoshida, K.; Yamaguchi, T. Low temperature Raman spectroscopy of aqueous solutions of aliphatic alcohols. Z. Naturforsch. A 2001, 56, 529–536.
- (8) Dixit, S.; Crain, J.; Poon, W. C. K.; Finney, J. L.; Soper, A. K. Molecular segregation observed in a concentrated alcohol-water solution. *Nature* **2002**, *416*, 829–832.
- (9) Labban, A.-K.S.; Marcus, Y. The Solubility and Solvation of Salts in Mixed Nonaqueous Solvents. 2. Potassium Halides in Mixed Protic Solvents. J. Solution Chem. 1997, 26, 1–12.
- (10) Desai, K. G. H.; Kulkarni, A. R.; Aminabhavi, T. M. Solubility of Rofecoxib in the Presence of Methanol, Ethanol, and Sodium Lauryl Sulfate at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 2003, 48, 942–945.
- (11) Hu, M.; Zhai, Q.; Liu, Z.; Xia, S. Liquid–Liquid and Solid–Liquid Equilibrium of the Ternary System Ethanol + Cesium Sulfate + Water at (10, 30, and 50) °C. J. Chem. Eng. Data 2003, 48, 1561–1564.
- (12) Chiavone-Filho, O.; Rasmussen, P. Solubilities of Salts in Mixed Solvents. J. Chem. Eng. Data 1993, 38, 367–369.
- (13) Li, W.; Gao, L.; Guo, J. K. Synthesis of yttria-stabilized zirconia nanoparticles by heating of alcohol-aqueous salt solutions. *Nanostruct. Mater.* **1998**, *10*, 1043–1049.
- (14) Pinho, S. P.; Macedo, E. A. Solubility of NaCl, NaBr, and KCl in Water, Methanol, Ethanol, and Their Mixed Solvents. *J. Chem. Eng. Data* 2005, *50*, 29–32, and also some other relevant references cited therein.
- (15) Widdel, F. Growth of Methanogenic Bacteria in Pure Culture with 2-Propanol and Other Alcohols as Hydrogen Donors. *Appl. Environ. Microbiol.* **1986**, *51*, 1056–1062.
- (16) Arscott, P. G.; Ma, C.; Wenner, J. R.; Bloomfield, V. A. DNA condensation by cobalt hexaammine(III) in alcohol-water mixtures: Dielectric constant and other solvent effects. *Biopolymers* 1995, *36*, 345–364.
- (17) Bowron, D. T.; Finney, J. L.; Soper, A. K. Structural Investigation of Solute-Solute Interactions in Aqueous Solutions of Tertiary Butanol. *J. Phys. Chem. B* **1998**, *102*, 3551–3563.
- (18) Cotton, F. A.; Wilkinson, G. *Advanced Inorganic Chemistry*, 6th ed.; John Willey and Sons: Singapore, 1999; pp 619–620.
- (19) Herrmann, W. A.; Kuehn, F. E. Aqueous Phase Organometallic Catalysis, 2nd ed.; Cornils, B., Herrmann, W.A., Eds.; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2004; pp 44–65.

- (20) Marcus, Y. Preferential Solvation of Ions in Mixed Solvents. 5. The Alkali Metal, Silver, and Thallium(I) Cations in Aqueous Organic Solvents According to the Inverse Kirkwood-Buff Integral (IKBI) Approach. J. Solution Chem. 2007, 36, 1385–1399.
- (21) Kalidas, C.; Hefter, G.; Marcus, Y. Gibbs energies of transfer of cations from water to mixed aqueous organic solvents. *Chem. Rev.* 2000, 100, 820–852.
- (22) Marcus, Y. Solvent Mixtures, Properties and Selective Solvation; Marcel Dekker, Inc.: New York, 2002, pp 142–238, and other relevant references cited therein.
- (23) Dizechi, M.; Marshall, E. Viscosity of Some Binary and Ternary Liquid Mixtures. J. Chem. Eng. Data 1982, 27, 358–363.
- (24) Abdulagatova, I. M.; Żeinalova, A. B.; Azizov, N. D. Viscosity of Aqueous Electrolyte Solutions at High Temperatures and High Pressures. Viscosity B-coefficient. Sodium Iodide. *J. Chem. Eng. Data* 2006, *51*, 1645–1659.
- (25) Gupta, S.; Olson, J. D. Industrial Needs in Physical Properties. Ind. Eng. Chem. Res. 2003, 42, 6359–6374.
- (26) Lencka, M. M.; Anderko, A.; Young, R. D. Modeling Viscosity of Multicomponent Electrolyte Solutions. *Int. J. Therm. Phys.* **1998**, *19*, 367–378.
- (27) Faranda, S.; Foca, G.; Marchetti, A.; Tassi, L.; Ulrici, A.; Zucchi, C. Analysis of the Temperature and Composition Dependence of Viscosimetric Properties of 2-Butanone + 2-Butanol Solvent Mixtures. *J. Solution Chem.* 2004, *33*, 1181–1197.
- (28) Waghorne, W. E. Viscosities of electrolyte solutions. *Philos. Trans. R. Soc. London, Ser. A* **2001**, *359*, 1529–1543.
- (29) Hu, Y.-F.; Lee, H. Prediction of viscosity of mixed electrolyte solutions based on the Eyring's absolute rate theory and the semi-ideal hydration model. *Electrochim. Acta* **2003**, *48*, 1789–1796.
- (30) Bester-Rogac, M.; Habe, D. Modern Advances in Electrical Conductivity Measurements of Solutions. *Acta Chim. Slov.* 2006, 53, 391– 395.
- (31) Christian, R. Solvents and Solvent Effects: An Introduction. Org. Process Res. Dev. 2007, 11, 105–113.
- (32) Wakisaka, A.; Komatsu, S.; Usui, Y. Solute-solvent and solvent-solvent interactions evaluated through clusters isolated from solutions: preferential solvation in water-alcohol mixtures. J. Mol. Liq. 2001, 90, 175–184.
- (33) Wang, P.; Anderko, A.; Young, R. D. Modeling Electrical Conductivity in Concentrated and Mixed-Solvent Electrolyte Solutions. *Ind. Eng. Chem. Res.* 2004, 43, 8083–8092.
- (34) Pura, S.; Atun, G. Conductometric Study of Ion Association of Hexaamminecobalt(III) Complexes in Ethanol + Water. J. Chem. Eng. Data 2002, 47, 1103–1109.
- (35) Pu, W.; He, X.; Lu, J.; Jiang, C.; Wan, C. Molar conductivity calculation of Li-ion battery electrolyte based on mode coupling theory. *J. Chem. Phys.* 2005, *123*, 231105/1–3.
- (36) Ansari, M. S.; Hertz, H. G. Group-Structure of Rotational Correlation Function g₂(t) of Flexible Molecule (EtOH) Produced by Addition of Strongly Interacting Compounds. Z. Phys. Chem. 1985, 146, 15–33.
- (37) Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals, 5th ed.; Butterworth Heinemann Press: New York, 2003; p 284.
- (38) Manley, G. M.; Rovnyak, D. Application Note, 2006, 1–4, (www. Facstaff.bucknell.edu/drovnyak/Ethanol-Water_exp.pdf).
- (39) Friebolin, H. Basic One-and Two-Dimensional NMR Spectroscopy, 2nd ed.; VCH: Weinheim, Germany, 1993; pp 309–310.
- (40) Wu, Y.-C.; Friedman, H. L. Heats of Dilution of Some Electrolyte Solutions in D₂O and Comparison of Thermodynamic Excess Functions in D₂O and H₂O. J. Phys. Chem. **1966**, 70, 166–172.
- (41) Ansari, M. S.; Ludwig, R.; Zeidler, M. D.; Hertz, H. G.; Poeschl, M. Nuclear Magnetic Relaxation Study of the System Methanol/Water/ Lithium Chloride. Z. Phys. Chem. 1997, 199, 99–121.
- (42) Philip, P. R.; Desnoyers, J. E. Apparent molal heat capacities of transfer from H₂O to D₂O of tetraalkylammonium bromides. *J. Solution Chem.* **1972**, *1*, 353–367.
- (43) Ansari, M. S.; Hertz, H. G. Effect of Ion-Solvation on the Internal Dynamics of the Ethanol Molecule as Studied Using NMR B' Coefficient. J. Solution Chem. 1984, 13, 877–906.

- (44) Iloukhani, H.; Rezaei-Sameti, M. Volumetric properties of methylcyclohexane with n-alkanes (C₅-C₁₀) at 293.15, 298.15 and 303.15 K-comparison with Prigogine Flory-Patterson theory. *J. Mol. Liq.* 2006, *126*, 62–68 (also: www.anton-paar.com).
- (45) Dean, J. A., Ed. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill: New York, 1973; pp 10–278/281.
- (46) Isono, T. Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkalineearth chlorides, LaCl₃, Na₂SO₄, NaNO₃, NaBr, KNO₃, KBr and Cd(NO₃)₂. J. Chem. Eng. Data **1984**, 29, 45–52.
- (47) Herraez, J. V.; Belda, R. Refractive Indices, Densities and Excess Molar Volumes of Monoalcohols + Water. J. Solution Chem. 2006, 35, 1315–1328.
- (48) Marsh, K. N.; Richards, A. E. Excess volumes for ethanol + water mixtures at 10-K intervals from 278.15 to 338.15 K. Aust. J. Chem. 1980, 33, 2121–2132.
- (49) Arce, A.; Blanco, A.; Soto, A.; Vidal, I. Densities, refractive indices, and excess molar volumes of the ternary systems water + methanol + 1-octanol and water + ethanol + 1-octanol and their binary mixtures at 298.15K. J. Chem. Eng. Data **1993**, *38*, 336–340.
- (50) Fillaux, F. Hydrogen bonding and quantum dynamics in the solid state. Int. Rev. Phys. Chem. 2000, 19, 553–564.
- (51) Mahiuddin, S.; Ismail, K. Concentration Dependence of the Viscosity of Aqueous Electrolytes. A Probe into Higher Concentration. J. Phys. Chem. 1983, 87, 5241–5244.
- (52) Hefter, G.; May, P. M.; Sipos, P.; Stanley, A. Viscosities of Concentrated Electrolyte Solutions. J. Mol. Liq. 2003, 103 & 104, 261–273, and some other relevant references therein.
- (53) Jenkins, H. D. B.; Marcus, Y. Viscosity B-Coefficients of Ions in Solution. *Chem. Rev.* **1995**, 95, 2695–2724.
- (54) Afzal, M.; Saleem, M.; Mahmood, M. T. Temperature and Concentration Dependence of Viscosity of Aqueous Electrolytes from 20 to 50 °C. Chlorides of Na⁺, K⁺, Mg²⁺, Ca²⁺, Ba²⁺, Sr²⁺, Co²⁺, Ni²⁺, Cu^{2+,} and Cr³⁺. J. Chem. Eng. Data **1989**, *34*, 339–346.
- (55) Hai-Lang, Z.; Shi-Jun, H. Viscosity and Density of Water + Sodium Chloride + Potassium Chloride Solutions at 298.15 K. J. Chem. Eng. Data 1996, 41, 516–520.
- (56) Abdulagatova, I. M.; Zeinalova, A. B.; Azizov, N. D. Experimental viscosity B-coefficients of aqueous LiCl solutions. J. Mol. Liq. 2006, 126, 75–88.
- (57) Abdulagatova, I. M.; Zeinalova, A.; Azizov, N. D. Viscosity of aqueous Na₂SO₄ solutions at temperatures from 298 to 573 K and at pressures up to 40 MPa. *Fluid Phase Equilib.* **2005**, 227, 57–70.
- (58) Hafiz-ur-Rehman. Investigation of Electrolyte Solutions in Strongly Interacting Liquids. Ph.D. Thesis, Quaid-i-Azam University, Islamabad, Pakistan, 2007.
- (59) Belda, R.; Herraez, J. V.; Diez, O. Rheological study and thermodynamic analysis of the binary system (water/ethanol): influence of concentration. *Phys. Chem. Liq.* **2004**, *42*, 467–479.
- (60) Herraez, J. V.; Belda, R. Viscous Synergy of Pure Monoalcohol Mixtures in Water and Its Relation to Concentration. J. Solution Chem. 2004, 33, 117–129.
- (61) Vila, J.; Rilo, E.; Segade, L.; Cabeza, O.; Varela, L. M. Electrical conductivity of aqueous solutions of aluminum salts. *Phys. Rev. E* 2005, 71, 031201/1–8.
- (62) Eicke, H. F. Nonmonotonic Electric Conductivity by Alkyl-chain Variation of an Ionic Additive in Percolated Nonionic W/O-Microemulsions. J. Phys. Chem. B 2001, 105, 2753–2756.
- (63) Barthel, J. Transport properties of electrolytes from infinite dilution to saturation. *Pure Appl. Chem.* **1985**, *57*, 355–367.
- (64) Barraza, R. G.; Olea, A. F.; Fuentes, I.; Martinez, F. Electrical Conductivity of Hydrophobically Modified Polyelectrolytes in Methanol/ Water Solution. J. Chil. Chem. Soc. 2003, 48, 67–71.
- (65) Chagnes, A.; Carré, B.; Willmann, P.; Lemordant, D. Modeling viscosity and conductivity of lithium salts in γ-butyrolactone. J. Power Sources 2002, 109, 203–213.

Received for review March 2, 2008. Accepted June 13, 2008.

JE800150H